BID PROPOSAL PACKET

February 18, 2025

GENERAL TIBBETS STREET EXTENSION PROJECT

City of Jackson, Ohio

Jackson County Board of Commissioners 25 East South Street Jackson, OH 45640-0606

Prime Civil, LLC PO Box 798, Chillicothe, OH 4560 (740) – 253 – 1618

REQUEST FOR BIDS

The Board of Commissioners of Jackson County, Ohio, 25 East South Street Jackson, Ohio 45640 will receive sealed bids, until **4:00 P.M.** on **March 11, 2025**. These bids will be opened at a special meeting on **March 12, 2025** at **9:00 A.M.** for the following project:

General Tibbets Street Extension Project: Furnishing all labor, supervision, equipment, and material necessary to construct the street extension improvements. The improvements include, but are not limited to new road construction, drainage, pavement markings and signage.

Bidders must comply with the prevailing wage rates on public improvements in Jackson County, Ohio, as determined by the Ohio Department of Commerce, Wages and Hour Bureau. Each bid will be deemed to include this provision. A Bid Guaranty and Contract Bond in accordance with Section 153.54 of the Ohio Revised Code amounting to 100% of the Bid Amount or a certified check, cashier's check or letter of credit pursuant to R.C. Chapter 1305 in the amount of 10% of the Bid Amount must accompany all bids assuring a firm contract will be entered into upon acceptance of bid. Bonds and other forms of guaranty will be returned to unsuccessful bidders. Bid Security furnished in Bond form shall be issued by a Surety Company or Corporation licensed in the State of Ohio to provide said surety. A performance bond and a payment bond, each in the amount of 100% of the contract price, are also required to ensure the faithful performance of the contract.

Copies of the surveys, plans, estimates, and bid forms prepared by Prime Civil, LLC and approved by the Jackson County Board of Commissioners are available, beginning February 18, 2025 on the Jackson County website at <u>www.jacksoncountyohio.us/information/bids</u>. Hard copies are also available at the Jackson County Board of Commissioners office, 25 East South Street Jackson, OH 45640 for a non-refundable charge of \$150.00 per package.

Questions pertaining to the bidding documentation should be addressed to Phil Buffington, Grant Writer/Project Manager, Jackson County Board of Commissioners, at <u>projects@jacksoncounty.us</u> and John Wetzel, Project Engineer, Prime Civil, LLC at <u>primecivil.jwetz@gmail.com</u>.

All bids must be submitted in a sealed envelope which indicates the name and address of the Bidder and the name of the Project being bid on the outside of the envelope.

The Board of Commissioners reserves the right to reject any and all bids, to accept the bid which it deems to be in the best interest of Jackson County, even if it is not the lowest, to waive any formalities or irregularities in bidding, or to advertise for new bids if in its judgment the best interests of the County would be promoted thereby. Except as expressly permitted by law, no bidder may withdraw a bid proposal for a period of sixty (60) calendar days after the date of the opening thereof.

BID INSTRUCTION SHEET

Persons interested in bidding to furnish all labor, supervision, equipment, and material necessary to construct the street extension improvements in Jackson County must complete all of the information requested and affix the signatures required on the Bidder Information Sheet, the Official Bid Tabulations, and the Bidder Acknowledgment Form. **Failure to complete the required information and/or to affix the required signatures may result in the bid being rejected in its entirety.**

All bids submitted must be typed or written legibly on this form and must be submitted to the Jackson County Board of Commissioners, 25 East South Street, Jackson, Ohio 45640, (740) 286-3301.

All bids must be submitted in a sealed envelope which indicates the name and address of the Bidder and the name of the Project being bid on the outside of the envelope.

ALL BIDS MUST BE RECEIVED BY 4:00 P.M. (LOCAL TIME) ON March 11, 2025, AT THE OFFICE OF THE JACKSON COUNTY BOARD OF COMMISSIONERS.

GENERAL TERMS AND CONDITIONS

The County of Jackson, hereinafter also referred to as "County", will accept bids from qualified firms or individuals to perform the following services:

Project Description

Construction of General Tibbets Street within the City of Jackson, Ohio. The length of the new construction shall be 3,573 feet (+/-) and the length of the proposed reconstruction shall be 291 feet (+/-). The new construction shall include roadway, drainage and other associated miscellaneous improvements suitable for industrial development.

Project Scope of Work

The Contractor shall furnish all materials, labor, equipment, services, transportation, and perform all the work for the project known as the General Tibbets Street Extension Project as called for in the Technical Specifications and as shown on the Plans (Construction Drawings) in Appendix "B". The successful Bidder will be required to comply with the prevailing wage rates on Public Improvements in Jackson County, as determined by the Ohio Department of Commerce, Wages and Hour Bureau. The successful Bidder should be prepared to comply with all local, state, and federal safety and environmental requirements. The project shall be accomplished in accordance with all federal program and state statutory requirements to include 2 CFR 200, Executive Orders, and Administrative Rules and Regulations.

<u>Bids</u>

To be considered, **one (1) original** of the bid proposal must be provided in accordance with the Instructions to Bidders included in this Invitation to Bid.

Bids must be sealed, labeled "General Tibbets Street Extension Project", and delivered to Jackson County Board of Commissioners, 25 East South Street, Jackson, Ohio 45640, until 4:00 P.M. on March 11, 2025. Mailed bids can be sent to PO Box 606, Jackson, OH 45640 or submitted electronically to projects@jacksoncounty.us</u>. Bids must be received by the deadline. Bids will be opened at 9:00 A.M. on March 12, 2025 and total amounts will be read aloud. Failure of the Bidder to complete all the bid documents may result in rejection of the bid.

A Bid guaranty and Contract Bond in accordance with Section 153.54 of the Ohio Revised Code amounting to 100% of the Bid amount or a certified check, cashier's check, or bid bond in the **amount of 10% of the bid amount** shall accompany each bid. Bond form shall be issued by a Surety Company or Corporation licensed in the State of Ohio to provide said surety. All bid security shall be made payable, without condition, to the County of Jackson. Said bid security shall be considered liquidated damages and shall be forfeited to the County in the event the

proposal is accepted, and the successful Bidder fails to execute the Contract and furnish the required bonds within ten (10) workings days after the notice of bid award.

The project shall be accomplished in accordance with all federal program and state statutory requirements to include Executive Orders, Administrative Rules and Regulations.

If information of a material matter is provided in response to any correspondence or question, or if a clarification is issued by the engineer or County, a copy of the question and answer will be provided to all prospective Bidders who have requested a set of plans. This response shall serve as an addendum to the advertised call for bids and become part of the County's approved plans.

Bidding documents will be available **February 18, 2025** and may be obtained from Phil Buffington, Grant Writer/Project Manager, Jackson County Board of Commissioners, at (740) 286-3301, <u>projects@jacksoncounty.us</u>.

Correspondence, questions, and/or clarifications of the bidding procedure or concerning the plans/specifications should be directed to: Phil Buffington, Grant Writer/Project Manager, Jackson County Board of Commissioners, at (740) 286-3301, <u>projects@jacksoncounty.us</u> and John Wetzel, Project Engineer, Prime Civil, LLC at <u>primecivil.jwetz@gmail.com</u>.

The Board of Commissioners reserves the right to reject any and all bids, to accept the bid which it deems to be in the best interest of Jackson County, even if it is not the lowest, to waive any formalities or irregularities in bidding, or to advertise for new bids if in its judgment the best interests of the County would be promoted thereby. The County also reserves the right to hold any or all bids for a period of sixty (60) days after the date of opening. Bidders will not be allowed to withdraw submitted bids during the sixty (60) day period.

Instructions to Bidders

Bidders must comply with the prevailing wage rates on public improvements in Jackson County, Ohio, as ascertained by the Ohio Bureau of Employment Services, Wage and Hour Division, State of Ohio, as provided for in Section 4115.03 to 4115.14 inclusive of the Ohio Revised Code. Each bid presented will be deemed to include this provision.

Bidders are expected to carefully read the specifications and examine the site of the proposed work. The submission of a proposal shall be considered by the County as evidence that the bidder has made such examination and has read the specifications and is satisfied as to the conditions to be encountered in performing the work. Bidders are expected to carefully read the Sample Contract included in this Bid Proposal Packet. The terms and conditions included in that contract are necessary terms and conditions for awarding the contract for this project. The submission of a proposal shall be considered by the County as evidence that the bidder has reviewed the contract and is satisfied and agrees to comply with the terms and conditions outlined therein.

All work and materials shall conform to the applicable divisions and paragraphs of the most current publication of the State of Ohio Department of Transportation Construction and Materials Specifications. Unless otherwise noted, all references to the State of Ohio Department of Transportation Construction and Materials Specifications shall mean the most current version as such specifications. Contractors must furnish certification that they or their asphalt contractor are pre-qualified by O.D.O.T. as an asphalt paving contractor.

The successful bidder must supply all material, equipment and labor to complete the work on the County street(s) enumerated.

The successful bidder shall begin work on or about May 1, 2025, or within fifteen (15) days after being notified to commence, whichever is earlier. Attendance at a pre-construction meeting will be required following award of the contract and prior to start of work. All work shall be completed before **August 1, 2025**.

Bid Security, Performance Bond and Payment Bond

A Bid Guaranty and Contract Bond in accordance with Section 153.54 of the Ohio Revised Code amounting to 100% of the Bid Amount or a certified check, cashier's check or letter of credit pursuant to R.C. Chapter 1305 in the amount of 10% of the Bid Amount must accompany all bids assuring a firm contract will be entered into upon acceptance of bid.

All bidders will be required to furnish a performance bond and payment bond or certified check on a solvent bank payable to County of Jackson in the amount of one hundred percent (100%) of the total contract price as a guarantee of faithful performance of the contract. Such bonds are not to be limited as to the time in which action may be instituted against the surety company. When not included in the contractor's performance/payment bond, a one (1) year maintenance guarantee is required.

Insurance

The successful bidder must present a certificate of insurance showing liability insurance in the amount of one million dollars and bodily injury in the amount of one million dollars and umbrella/excess insurance in the amount of not less than two million dollars. An official certificate of the Ohio Industrial Commission indicating that a premium required under the Ohio Workers' Compensation Act has been paid and, as required by Ohio Revised Code Section 5719.042, the Contractors Statement as to Delinquent Taxes must also be presented.

Criteria for Determing "Lowest and Best Bidder"

Although Jackson County has not adopted (and expressly rejects any requirement to use) the "lowest responsive and responsible bidder" standard established in Ohio Revised Code Section 9.312, Jackson County intends to utilize some of the principles of that standard in determining the "lowest and best bidder." Thus, in evaluating the bids submitted for this Project to determine the "lowest and best bidder," Jackson County intends to consider both the responsiveness of the

Bid Proposal submitted by each bidder and the responsibility exhibited by each bidder in its past dealings and practices. The following items may be considered in determining the "lowest and best bidder."

- 1. **Responsiveness of the Bid Proposal**: The determination of the responsiveness of a Bid Proposal involves an evaluation of the completeness and accuracy of the documents and items submitted by the Bidder in response to the request for bids. Specific items which may be considered by Jackson County in evaluating the level of responsiveness of the Bid Proposals received are as follows:
 - i. completion of all aspects of bid proposal;
 - ii. submittal of all additional documentation required by the bid proposal;
 - iii. accuracy of the information contained in the bid proposal;
 - iv. whether proposal is based on actual site evaluation;
 - v. lack of irregularities or deviations from the specifications;
- 2. **Responsibility of the Bidder**: The determination of the responsibility of a Bidder involves an evaluation of the quality of the Bidder. Specific items which may be considered by Jackson County in evaluating the level of responsibility of Bidders are as follows:

The Bidder's work history including:

- i. whether the Bidder has a record of consistent customer satisfaction;
- ii. whether the Bidder has a record of consistent completion of projects, especially projects which are comparable to or larger and more complex than Jackson County's Project;
- iii. whether the Bidder has a consistent record of completing work on time and in accordance with the contract documents;

(If the Bidder's management (i.e., president or director) operates or has operated another construction company, Jackson County may consider the work history of that company in determining responsibility of the Bidder);

- v. The Bidder's prior experience on other projects of Jackson County, including whether the Bidder was able to complete these projects on time and in compliance with the contract documents. The Bidder's demonstrated ability or inability to work with Jackson County during the past projects will also be considered;
- vi. the Bidder's familiarity and experience with constructing improvements for public entities in Ohio;
- vii. the number of years Bidder has been actively engaged as a contractor;
- viii. the number of years Bidder has been actively engaged as a contractor in the trade for which his Bid has been submitted;
- ix. the number of year Bidder has been in business;
- x. the Bidder's recent experience record in the industry, including, but not limited to, the original contract price for each job undertaken by the Bidder, the amount of any change orders or cost overruns on each job and the reasons for any change orders or cost overruns; and

The Bidder's financial resources, including, but not limited to:

- i. the Bidder's financial ability to complete work on time and in accordance with the contract documents without resort to its Surety;
- ii. the Bidder's ability to secure acceptable Performance and Payment bonds;
- iii. whether any claims have been made against Performance and/or Payment bonds secured by the Bidder on other projects; and
- iv. the objective reasonableness of the Contract amount.

The quality, experience, continuity, quantity, and identity of the Bidder's work force;

The Bidder's management skills;

The quality, continuity, and quantity of the Bidder's facility and equipment;

The Bidder's compliance with federal, state, and local laws and regulations, including, but not limited to, the Occupational Safety and Health Act, Prevailing Wage laws, and the Fair Labor Standards Act;

The foregoing information with respect to each of the subcontractors which the Bidder intends to use on the Project; and

Each of the above enumerated factors, standing alone, shall not be considered determinative of the "lowest and best bid." Jackson County shall have complete discretion in assessing the level of importance to be placed upon any one or more of the factors enumerated and in determining the "lowest and best bid" and in awarding the Contract.

Award of the Contract

The County reserves the right to reject any and all bids and to award the Contract to other than the low bidder with good cause. The County further reserves the right to waive any informality or irregularities in the bidding process. Additionally, the Bidder recognizes the right of the County to reject a bid if the bidder failed to furnish the data required by the bidding documents or if the bid is in any way incomplete or irregular.

Each bidder shall be prepared to provide evidence of his/her experience, qualification, and financial ability to carry out the terms of the Contract.

All bids shall remain firm for a period of sixty (60) calendar days after the date of the bid opening. Proposals may not be modified after submittal. Bidders may withdraw proposals at any time prior to bid opening. No proposal may be modified or withdrawn after the bid opening except where the Award of the Contract has been delayed more than sixty-one (61) days.

The Contractor to whom the Contract is awarded will be required to execute the Contract and obtain the Performance Bond and Payment Bond within ten (10) calendar days from the date of receipt of the Notice of Award. The Notice of Award shall be accompanied by the necessary contract documents. In case of failure of the Bidder to execute the Contract, County may

consider the Bidder in default, in which case the Bid Bond accompanying the proposal shall become the property of County.

Notwithstanding any delay in the preparation and execution of the formal Contract, each bidder shall be prepared to commence work within thirty (30) days of receipt of the Notice to Proceed.

Protest Procedure

Bid protests shall be submitted in writing to: Phil Buffington, Grant Writer/Project Manager, Jackson County Board of Commissioners, at (740) 286-3301, project@jacksoncounty.us and John Wetzel, Project Engineer, Prime Civil, LLC at primecivil.jwetz@gmail.com within 72 hours of bid award notification. Protests must contain at a minimum the name, address and telephone number of the protester, the signature of the protester or its representative and evidence of authority to sign; a detailed statement of the legal and factual grounds of the protest including copies of relevant data; and the form of relief requested. Within three (3) business days of receipt, and after consultation with legal counsel the County will respond to the protest. The County reserves the right to reject any or all bids; to waive irregularities of information in any bid; and/or to take any steps determined prudent in order to resolve the protest.

BID PROPOSAL COMPLIANCE CHECKLIST

THIS COMPLIANCE CHECKLIST IS PROVIDED FOR THE CONVENIENCE AND REFERENCE OF BIDDERS. HOWEVER, THE PROVISION OF THIS CHECKLIST DOES NOT OBVIATE BIDDERS' RESPONSIBILITY TO DETERMINE FOR THEMSELVES THE INFORMATION AND FORMS WHICH ARE REQUIRED FOR SUBMISSION AND THE TIMING FOR SUBMITTING SUCH ITEMS. BIDDERS EXPRESSLY ACKNOWLEDGE THAT THE COUNTY'S FAILURE TO LIST ANY REQUIRED SUBMISSION ITEMS SHALL NOT BE AN EXCUSE FOR ANY FAILURE TO SUPPLY SUCH ITEM AS REQUIRED BY THE BID PROPOSAL PACKET.

In order to ensure that items required for submission with the Bid Proposal are included, Bidders must complete the following Checklist by "checking" all items which have been submitted. Upon completion, all items in the **Mandatory Submission Items For All Bidders -- Submitted Prior To Bid Opening** Category must be "checked," indicating that they have been properly submitted with the Bid Proposal prior to Bid Opening.

I. MANDATORY SUBMISSION ITEMS FOR ALL BIDDERS -- SUBMITTED PRIOR TO BID OPENING:

The following items are required to be submitted with this Bid Proposal. Failure to include any of the listed items may result in the rejection of the Bid Proposal in its entirety.

 Responsible Bidder Information Form
 Bidder Acknowledgment Form
 Bid Guaranty Bond in the Amount of 100% of the Bid Amount including related Financial Statement and Power of Attorney Forms or Bid Security in the form of a Certified Check, Cashier's Check or Money Order in the amount of 10% of the Bid Amount.
 Official Bid Tabulation – Single Project Bid
 Bid Proposal Compliance Checklist

II. MANDATORY SUBMISSION ITEMS FOR SUCCESSFUL BIDDER -- SUBMITTED WITHIN TEN (10) DAYS AFTER MAILING OF NOTICE OF AWARD OF CONTRACT:

The following items are required to be submitted by the Successful Bidder within ten (10) days of the mailing of the Notice of Award of Contract. Failure to submit any of the listed items may result in the rejection of the Bid Proposal in its entirety.

RESPONSIBLE BIDDER INFORMATION FORM

(Attach additional sheets as needed)

Company Name:				
Company Address:				
Company Telephone Number:				
Company E-Mail Address:				
Number of Years in Business:				
Federal Tax ID No:				
Contact Person's Name & Title:				
Indicate all occurrences of the following in the last 4 years (if none, so state). For verification attach documentation, and/or provide sufficient and appropriate detail information such as: Project name, Owner, contact person and telephone number, contract amount, etc.				
a) Prevailing Wage violations:				

b) Contract abandonment/termination or Surety takeover:

c) Debarment by state, federal or local jurisdiction:

d) OSHA violations:

e) Liquidated damages assessed:

I hereby certify that the information above is factual and complete.

Company Name:									
Authorized Official (please print or type):									
Signature of Authorized Official	Date:								

BIDDER ACKNOWLEDGMENT FORM

The undersigned hereby attests that the information provided to the Jackson County Board of Commissioners pertaining to the bid for the General Tibbets Street Extension project is true and accurate to the best of his/her knowledge, that he/she has read and understands the conditions of bidding and the equipment, material, and specifications provided, and has complied with those conditions and tailored his/her bids exclusively to the specifications provided. The undersigned understands that the Board of Commissioners reserves the right to exclusively determine which, if any, Phase of the proposed project to complete, the right to reject any and all bids, to accept the bid which it deems in the best interest of Jackson County, even if it is not the lowest, to waive any formalities or irregularities in bidding, or to advertise for new bids if in its judgment the best interests of the County will be promoted thereby. The undersigned further understands that he/she may not change, alter, modify or withdraw his/her bid, except as expressly permitted by law, for a period of sixty (60) days after the opening of the bids and that his/her bid is binding upon him/her during that period of time.

Signature

Printed or Typed Name

Company Name

Title of Individual Signing

Date

OFFICIAL BID TABULATION-SINGLE BID PROJECT

Project:		General Tibbets Street Extension	Engineer's Estimate of Project Cost:			
			\$1,881,227.17			
LINE NO.	SPEC ITEM	DESCRIPTION	UNIT	NO. UNITS	UNIT PRICE	TOTAL
1	201	CLEARING AND GRUBBING	LS	1		
2	202	PIPE REMOVED, 24" AND UNDER	FT	292		
3	202	PIPE REMOVED, OVER 24"	FT	50		
4	202	HEADWALL REMOVED	EACH	1		
5	202	PAVEMENT REMOVED, CONCRETE	SY	107		
6	202	PAVEMENT REMOVED	SY	1,099		
7	202	GATE REMOVED	EACH	2		
8	202	MANHOLE REMOVED	EACH	1		
9	203	EXCAVATION	CY	4,820		
10	203	EMBANKMENT	CY	3,797		
11	203	GRANULAR MATERIAL, TYPE B	CY	1,000		
12	204	SUBGRADE COMPACTION	SY	10,147		
13	204	PROOF ROLLING	HR	4		
14	601	ROCK CHANNEL PROTECTION, TYPE C WITH FILTER	CY	11		
15	616	WATER	MGAL	10		
16	659	SEEDING AND MULCHING	SY	6,299		
17	659	REPAIR SEEDING AND MULCHING	SY	315		
18	659	COMMERCIAL FERTILIZER	TON	0.9		
19	659	LIME	ACRE	1.3		
20	659	WATER	MGAL	34		
21	832	STORM WATER POLLUTION PREVENTION PLAN	LS	1		
22	832	EROSION CONTROL	EACH	50,000		
23	503	UNCLASSIFIED EXCAVATION	LS	1		
24	518	POROUS BACKFILL WILL FILTER FABRIC	CY	34		
25	602	CONCRETE MASONRY	CY	2.62		
26	611	12" CONDUIT, TYPE A	FT	188		
27	611	18" CONDUIT, TYPE A	FT	180		
28	611	18" CONDUIT, TYPE C	FT	441		
29	611	24" CONDUIT, TYPE C	FT	71		
30	611	2'x5' CONDUIT, TYPE A, 706.05	FT	56		
31	611	CATCH BASIN, NO 2-3	EACH	4		
32	252	FULL DEPTH PAVEMENT SAWING	FT	248		
33	301	ASPHALT CONCRETE BASE, PG64-22	CY	1,181		
34	304	AGGREGATE BASE	CY	1,915		
35	407	TACK COAT	GAL	651		
36	441	ASPHALT CONCRETE SURFACE COURSE, TYPE 1, PG64-22 (448)	CY	532		
37	441	ASPHALT CONCRETE INTERMEDIATE COURSE, TYPE 2 (448)	CY	684		
38	630	REMOVAL OF GROUND MOUNTED SIGN AND REERECTION	EACH	2		
39	630	GROUND MOUNTED SUPPORT, NO. 3 POST	FT	108		
40	630	SIGN, FLAT SHEET	SF	54		
41	642	CENTERLINE	MILE	0.74		
42	642	EDGE LINE. 4"	MILE	1.47		
43	642	STOP LINE	FT	62		
44	SPECIAL	MISC.: SOIL CONSULTANT FOR FIELD TESTING AND INSPECTION	LS	1		
45	614	MAINTAINING TRAFFIC	LS	1		
46	623	CONSTRUCTION LAYOUT STAKES AND SURVEYING	LS	1		
47	624	MOBILIZATION	LS	1		

SAMPLE AGREEMENT

This Agreement is made this _____ day of _____, 2025, by and between ("Contractor") whose address is ______, and the Board of Commissioners of Jackson County ("Jackson County" or "the County") whose address is 25 East South Street, Jackson, Ohio 45640.

Contractor is a company which is in the business of general road construction. Contractor furnishes the labor, equipment and material necessary to perform road construction, road resurfacing, and road repair.

Jackson County is the owner of various streets in the County which require grinding of old pavement, resurfacing with asphalt concrete, and replacement of concrete curbs and gutters.

NOW, THEREFORE, in consideration of the mutual promises contained in this Agreement, the parties agree as follows:

Article I Contract Documents

- 1) The Contract Documents governing this Agreement are as follows:
 - a) Notice to Bidders (As advertised and as contained in the Bid Proposal Packets);
 - b) Bid Proposal Packet Project;
 - c) Responsible Bidder Information Sheet (Completed by Contractor);
 - d) Bidder Acknowledgment Form (Completed by Contractor);
 - e) Prevailing Wage Rate Materials for Jackson County, Ohio;
 - f) Official Bid Tabulation -- Single Project Bid Tally Sheet (Completed by Contractor)
 - g) Bid Guaranty Bond;
 - h) Certified Power of Attorney;
 - i) Ohio Industrial Commission Certificate indicating payment of Workers' Compensation premium;
 - j) Contractor's Statement as to Delinquent Taxes; and
 - k) Certificate of Liability Insurance.

Article II

Professional Standards and Contractor Responsibilities

- 2) Contractor agrees to furnish the services of its organization, to exert its best efforts, and to exercise the highest degree of professional skill and competence in performing all work specified in the Contract Documents designated in Paragraph 1 of this Agreement and as to any additional work required by Jackson County and accepted by Contractor.
- 3) Contractor agrees to furnish all tools, equipment, labor and materials necessary to complete the work identified in the bid specifications and to perform all work incidental

thereto, as described, detailed, and specified in the Contract Documents designated in Paragraph 1 of this Agreement.

4) Contractor agrees to provide all tools, equipment, labor and material in the manner and according to the specifications contained in the Contract Documents designated in Paragraph 1 of this Agreement.

Article III Estimated Quantities

5) The estimated quantities upon which Contractors proposal was based are *approximate only*. During the term of this Agreement, and at the option of the County, the estimated quantities for the Project may be increased, decreased, or non-performed as conditions dictate. Contractor shall not be entitled to any claim for loss of profits or other damages should the actual quantities of any or all items be greater than or less than the estimated quantities stated in the Bid Proposal Packet.

Article IV

Date of Commencement and Completion Requirements

- 6) Unless an extension of the commencement date is granted in writing by the County, Contractor shall begin work on ______, 2025 or within thirty (30) days of the date established by the County and provided to the Contractor in writing.
- After the execution of this Agreement by both parties but prior to the commencement of any work, Contractor shall attend a pre-construction meeting at the time and date designated by the County.
- Contractor shall achieve one hundred percent (100%) completion of the work specified in the Contract Documents designated in Paragraph 1 of this Agreement not later than , 2025.

Article V

Liquidated Damages for Failure to Complete Work on Time

- 9) If, for reasons beyond the Contractor's control, a winter shutdown is necessitated, the Contractor must make a request to the County for the shutdown and coordinate any permitted shutdown with the County to insure that nothing is disturbed that cannot be restored prior to the shutdown. In the event of a shutdown, there will be no additional payment for remobilization when work resumes.
- 10) If Contractor neglects, fails, or refuses to complete the work specified in the Contract Documents designated in Paragraph 1 of this Agreement within the time specified herein, or fails to secure an extension of time from the County, then Contractor agrees, as part consideration for awarding this Agreement, to pay the County five hundred dollars (\$500.00) per day, not as a penalty, but as liquidated damages for such breach after the time stipulated herein for completing work designated in the Contract Documents.

11) If Contractor neglects, fails, or refuses to complete the work specified in the Contract Documents designated in Paragraph 1 of this Agreement within the time specified herein, or fails to secure an extension of time from the County, then Contractor agrees, as part consideration for awarding this Agreement, that the County shall keep a record of all expenditures for inspection, supervision, engineering and administration after the end of the allotted time and shall deduct that amount from the final payment made to Contractor.

Article VI Performance Bond and One-Year Maintenance Guarantee

- 12) Contractor shall furnish to the County a performance bond in the amount of one hundred percent (100%) of the total contract price indemnifying the County against damages that may be suffered due to Contractor's failure to perform this Agreement according to its provisions and in accordance with the specifications designated in the Contract Documents outlined in Paragraph 1 of this Agreement.
- 13) Contractor agrees to guarantee the quality of its materials, workmanship, and results from any defects for a period of one (1) year after completion and payment of the full contract price. During that one-year period and pursuant to this guarantee, Contractor, at the request of the County, will repair or replace any or all portion(s) of its work or materials determined by the County to be defective.

Article VII Insurance Required

- 14) In addition to the complete and adequate workers' compensation insurance required by other provisions of this Agreement, the Contractor shall carry and maintain for a period of two (2) years after final completion of this Project:
 - a. Business automobile liability insurance (including owner, non-owned, and hired vehicles) in an amount not less than five hundred thousand dollars (\$500,000.00) per occurrence.
 - b. Contractor's General Public Liability and Property Damage Insurance issued to the Contractor and protecting him from all claims for destruction of, or damage to, property arising out of or in connection with any operation under this Contract, whether such operations be made by himself or by any subcontractor under him, or anyone directly or indirectly employed by the Contractor or by any subcontractor under him. All such insurance shall be written with a limit of liability of not less than \$1,000,000.00 combined single limit for all damages arising out of bodily injury, including death, at any time resulting therefrom, and all damages arising out of injury or destruction of property, including the property of Jackson County during the policy period.
 - c. Umbrella/Excess Insurance written with a limit of liability of not less than \$2,000,000.00 combined single limit for all damages arising out of bodily injury, including death, at any time resulting therefrom, and all damages arising out of injury or destruction of property, including the property of Jackson County during

the policy period and which shall be in addition and supplemental to all insurance coverages listed in this Article.

- d. Property Insurance issued to the Contractor and protecting him from all claims for destruction of, or damage to, materials owned by the County and stored on Contractor's business premises or other storage facility of the Contractor. All such insurance shall be written with a limit of liability of not less than \$1,000,000.00 combined single limit for all damages arising out of injury or destruction of property, including the property of Jackson County during the policy period.
- 15) All insurance must be procured from a company or companies that are authorized to do business within the state of Ohio.
- 16) Within ten (10) days of the Notice of Award of Contract, the County shall receive a certificate of insurance indicating the above insurance policies are in force.
- 17) The County's acceptance of any certificate of insurance evidencing Contractor's insurance coverage and limits does not constitute approval or agreement by the County that the insurance requirements have been met or that the insurance policies shown in the certificates of insurance are in compliance with the requirements of this Agreement. Failure of the County to demand such a certificate or other evidence of full compliance with these requirements or failure of the County to identify a deficiency from the documentation or other evidence provided to it shall not be construed as a waiver of the Contractor's obligations to maintain insurance in the types and amounts detailed in this Agreement.
- 18) If any of the Contractor's liability coverages are provided on a claims-made basis, the policy date or retroactive date shall predate the Agreement and the termination date of the policy or applicable extended reporting period shall be no earlier than two (2) years after the termination date of the Project.
- 19) All insurance costs shall be paid by the Contractor and the required coverage and amounts shall be maintained without interruption during the entire term of this Agreement and for two (2) years after final completion of this Project. In addition, the County's property insurance requires a minimum deductible of \$2,500.00 which deductible shall be paid by the Contractor in the event of loss.
- 20) The Contractor understands and agrees that it is required to ensure that every subcontractor retained or otherwise employed by the Contractor to perform services under this Agreement complies with the insurance requirements of this Article.
- 21) If Contractor sublets/subcontracts any portion of the work to be performed under this Agreement, Contractor shall be responsible for guaranteeing that the subcontracted work is covered by insurance equal to or greater than that required of the Contractor by this Agreement.
- 22) If any insurance required by this Article is to be issued or renewed on a claims-made form, as opposed to the occurrence form, the retroactive date for coverage will be no later than the commencement date of the project.

23) All insurance costs shall be paid by Contractor and the required coverage and amounts shall be maintained without interruption during the entire term of this Agreement.

Article VIII County Duties and Responsibilities

- 24) The County shall pay Contractor for Contractor's performance under this Agreement a Contract Sum based upon the unit prices for labor and materials submitted by Contractor on its Official Bid Tabulation Form. A copy of this Form is attached hereto as Exhibit A. Based upon the current estimated number of units for this Project, the County agrees to pay to Contractor a Contract Sum of (\$). This Contract Sum shall be decreased in the event that the units required by the County are decreased, and increased in the event that the units required by the County are increased. In either event, Contractor shall not be entitled to any claim or loss of profits or other damages should the actual units be greater or less than the current estimated number of units for the Project. The Contract Sum due under this Agreement shall be paid to Contractor pursuant to Paragraphs 25, 26, and/or 27 of this Agreement.
- 25) Payment of the Contract Sum designated above may be made either via Progress Payments requested at the completion of major portions of work or via a lump sum payment at the conclusion of the work.
- 26) Requests for payment must be made as follows:

a) Application:

Applications for payment shall be submitted by the Contractor to Phil Buffington, Grant Writer/Project Manager, Jackson County Board of Commissioners, at (740) 286-3301, <u>projects@jacksoncounty.us</u>. Each application for payment shall only request payment for labor completed and materials incorporated since the prior request for payment, if any, was submitted.

Applications for payment shall be made on an AIA Document G702 form, or such other form or forms, if any, required by the County and shall include complete releases of all claims of Contractor, all subcontractors and suppliers of either material or labor relating to the work for which payment is requested as well as all required prevailing wage documentation. The County will review the application for approval and, if it is approved, submit the application to the County Prevailing Wage Coordinator for a determination that the prevailing wage requirements have been satisfied.

Applications for payment for materials shall indicate whether the materials have been incorporated into the Project or whether they are being stored in Contractor's facilities. Applications for Payment for materials which are merely stored in Contractor's facilities shall include proof, satisfactory to the County, that the materials have been fully paid for and are adequately protected and insured against loss and damage. Applications for Payment shall contain an affidavit showing amounts owed to subcontractors and suppliers as well as all documentation required to evidence that the Contractor is complying with the prevailing wage requirements of this Agreement. Each Application for Payment shall only request payment for labor completed and materials incorporated since the prior request for payment was submitted.

No more than one Application for Payment may be submitted per calendar month.

Failure to provide all of the information requested by the County may result in rejection of the Application. Rejected Applications for Payment will be returned to Contractor by regular United States Mail, postage prepaid, within twenty-four (24) hours of being rejected. Contractor may resubmit a revised Application for Payment to the County at any time. At its sole discretion, and in lieu of the above rejection methodology, Jackson County may notify the Contractor of, and remedy, defective and/or incomplete Applications for Payment by alternative means such as telephone communications with Contractor and/or facsimile or email transmission of defective/incomplete Applications without mailing.

b) Determination:

Payments shall be paid pursuant to the following procedure. Within five (5) business days of receiving a completed Application for Payment for Work, the County shall review the Application for approval and shall determine whether the work for which payment has been requested has been completed in compliance with the specifications and requirements contained in the Contract Documents designated in Paragraph 1 of this Agreement, all subcontractors and suppliers have been paid for the materials and labor utilized to complete the portions of the work itemized and paid for as a result of prior Applications for Payment for Work, and whether any reason exists not to pay the amount requested by Contractor. Upon making such determination in the affirmative, the County shall submit the Application to the County Prevailing Wage Coordinator for a determination that the prevailing wage requirements have been satisfied. The County will deduct the required amount to be retained per subsection "c" of this paragraph, shall pay the portion of the Payment Application for which the County is responsible.

c) Retainage Requirements:

i. Retainage:

The amount retained (withheld from payment) for labor and material costs shall be ten percent (10%). Upon reaching fifty percent (50%) completion of the entire work outlined in the Contract Documents designated in Paragraph 1 of this Agreement, the amount retained will be reduced to zero percent (0%). However, the amount previously retained will remain withheld from payment until the entire work is completed and retainages are released pursuant to Paragraph 26(c)(iii) of this Agreement.

ii. Escrow Amount:

No Escrow Account will be established as the retainage required by this Agreement will be achieved through Contractor deduction of the retainage amount from its Payment Application.

iii. Substantial Completion:

Upon Substantial Completion, acceptance of the entire work by the County, delivery by Contractor to Jackson County of complete releases of all claims of Contractor, all subcontractors and suppliers of either material or labor, and determination by the County that no reason exists to withhold payment of the retainage amount, the County will authorize the payment of the retainage amount to Contractor, withholding only that amount necessary to assure completion. Jackson County makes no representation as to the timing of the payment of the retainage amounts.

For purposes of this Agreement, Substantial Completion shall mean completion of at least ninety-five percent (95%) of the work specified in the Contract Documents designated in Paragraph 1of this Agreement and any additional work requested by Jackson County and accepted by Contractor.

d) Prompt Payment of Subcontractors and Suppliers:

Upon receipt of payment, Contractor shall promptly pay each subcontractor and each supplier, out of the amount paid to the Contractor, the amount to which each subcontractor is entitled, which amounts are listed in the affidavit submitted by Contractor with the Application for Payment for Work. After payment, but prior to or contemporaneously with, Contractor's next Application for Payment for Work, Contractor shall obtain and submit to the County complete releases of all claims of subcontractors and suppliers of either material or labor relating to the Work itemized in, included in, and paid for as a result of, the prior Application for Payment for Work.

Failure to obtain and submit complete releases from each subcontractor or supplier for all claims related to Work which was included in prior Application(s) for Payment for Work shall be grounds for delaying the payment of or refusing to pay a portion or the entire amount of, Contractor's subsequent Application(s) for Payment for Work.

27) The interest rate to be applied to any payments due and unpaid under this Agreement shall be determined in accordance with Section 153.14 of the Ohio Revised Code.

Article IX Changes in the Project

28) Changes in the Project consisting of additions, deletions or other revisions may be accomplished after execution of this Agreement, without invalidating this Agreement. Changes in the Project resulting from additions to the work requested by the County shall be performed by Contractor, if mutually agreed in writing. Except for changes due to the fault of the Contractor, Changes in the Project representing additional work, accepted by the County, shall entitle the Contractor to an adjustment in compensation as outlined in this Agreement. Changes in the Project resulting from deletions from the Work shall result in a credit to the County in the amount which was originally charged by the Contractor for the Work. Deductions from the credit amount for potential profit from the Work shall not be made unless such deduction is agreed to in writing by the County.

- 29) The increase or decrease in compensation due the Contractor as a result of Changes in the Project shall be determined, where possible, by unit prices stated in the bidding documents. If no unit prices were stated in the bidding documents or if unit prices cannot be used to determine the increase or decrease in compensation, additional or reduced compensation shall be determined in one or more of the following ways:
 - a) By mutual acceptance of a lump sum properly itemized and supported by sufficient substantiating data to permit evaluation;
 - b) By unit prices mutually agreed upon;
 - c) By mutual acceptance of a fixed or percentage fee;
 - d) On the basis of a standard hourly rate
- 30) Changes in the Project due to the fault of Contractor shall be performed by Contractor at no cost to the County.
- 31) Requests for Changes in the Project shall be submitted to the County. All requests for Changes in the Project shall include a detailed breakdown for labor and materials and shall be in the form required by the County.

Article X Domestic Steel Requirement

32) Domestic steel use requirements as specified in Section 153.001 of the Ohio Revised Code apply to this Project. Copies of Section 153.001 of the Revised Code can be obtained from any of the offices of the Department of Administrative Services.

Article XI Prevailing Wage

- 33) Contractor agrees to comply with the prevailing wage rates on public improvements in Jackson County, Ohio as ascertained by the Ohio Bureau of Employment Services, Wage and Hour Division.
- 34) Noncompliance with this prevailing wage requirement may result in sanctions, termination of this Agreement for default, and debarment or suspension from future County-funded projects.

Article XII

Compliance with Applicable Statutes, Ordinances and Regulations

35) In addition to providing all tools, equipment, labor and material in the manner and according to the specifications contained in the Contract Documents designated in

Paragraph 1 of this Agreement, Contractor agrees to comply with all applicable federal, state, and local statutes, ordinances, regulations, and resolutions.

- 36) At all times during the term of this Agreement, Contractor shall comply with Ohio Revised Code Section 153.59 by ensuring that Contractor and/or any person acting on its behalf does not discriminate in its hiring practices by reason of race, creed, gender, handicap, national origin, ancestry, or color. Contractor shall further comply with Ohio Revised Code Section 153.59 by ensuring that Contractor and/or any person acting on its behalf does not discriminate against or intimidate any employee hired for the performance of work under this Agreement on account of race, creed, gender, handicap, national origin, ancestry, or color.
- 37) At all times during the term of this Agreement, Contractor shall pay into the State Insurance Fund the amount of premium determined and fixed by the Industrial Commission pursuant to Ohio Revised Code Chapter 4123 promptly when due or shall elect to pay compensation directly and contribute to the surplus of the fund as required by law. Contractor agrees to fully indemnify and hold the County harmless against any liability or loss occasioned by reason of a breach of this paragraph. This paragraph is binding on all contractors and subcontractors hired by Contractor that perform work under this Agreement and such compliance is warranted by Contractor. The County may require Contractor to provide a Certificate of Compliance from the Industrial Commission. If such certificate is required, the failure to provide the certificate to the County is a breach of this Agreement and grounds for immediate termination of the Agreement.
- 38) At all times during the term of this Agreement, Contractor shall comply with all applicable Ohio Safety and Health Administration (OSHA) regulations.
- 39) At all times during the term of this Agreement, Contractor shall comply with all applicable federal, state, and local statutes, regulations, ordinances, and resolutions pertaining to a drug-free workplace.

Article XIII Hold Harmless

40) Contractor shall indemnify and hold the County harmless from any and all losses, claims, demands, damages, suits or causes of action by any person, firm, association, corporation or governmental entity arising out of or connected in any way with the services performed pursuant to this Agreement and/or the negligence, recklessness, gross negligence or willful misconduct on the part of Contractor, its agents, or employees.

Article XIV Waiver

41) The failure of the County to insist in any one or more instances upon strict compliance with any of the provisions of this Agreement or the Contract Documents designated in

Paragraph 1 of this Agreement shall not be construed as a waiver or relinquishment of the County's right to thereafter require strict compliance.

Article XV Termination of Agreement for Cause

- 42) In addition to termination as provided in other portions of this Agreement, this Agreement may be terminated by County at any time without notice upon the occurrence of one or more of the following events:
 - a) In the event Contractor shall be guilty of fraud, dishonesty, or other acts of misconduct in the rendering of professional services;
 - b) In the event Contractor shall fail or refuse to faithfully or diligently perform the work required by this Agreement;
 - c) Bankruptcy or insolvency of Contractor;
 - d) Assignment of this Agreement by Contractor without the prior written consent of the County;
 - e) Failure of Contractor to obtain insurance required by this Agreement;

Article XVI Continuing The Work

43) Contractor shall carry on the work and adhere to the completion dates established in this Agreement during all disputes or disagreements with County. No work shall be delayed or postponed pending resolution of any disputes except as Contractor and County may otherwise agree in writing.

Article XVII Governing Law

44) This Agreement will be governed by and construed in accordance with the laws of the State of Ohio, and all obligations of the parties created under this Agreement are performable in Jackson County, Ohio. Any suits, claims, or causes of action brought to enforce the terms of this Agreement or related to the subject of this Agreement in any way shall be brought in the courts of Jackson County, Ohio.

Article XVIII Parties Bound

45) This Agreement shall be binding on and inure to the benefit of the parties and their legal successors, if any.

46) This Agreement and the rights, privileges, or duties created hereunder shall not be assigned by either party without the prior written consent of the other party.

Article XIX Legal Construction

47) In case any one or more of the provisions contained in this Agreement shall for any reason be held invalid, illegal, or unenforceable in any respect, that invalidity, illegality, or unenforceability shall not affect any other provision, and this Agreement shall be construed as if the invalid, illegal, or unenforceable provision had never been contained in it.

Article XX Complete Agreement/Prior Agreements Superseded

48) This Agreement constitutes the sole and only agreement of the parties and supersedes any prior understandings or written or oral agreements between the parties respecting the subject matter of this Agreement.

Article XXI Notices

49) Any notices to be given under this Agreement by either party to the other may be effected either by personal delivery in writing or by registered or certified mail, with postage prepaid, and return receipt requested. Mailed notices shall be addressed to the parties at the addresses appearing in the introductory paragraph of this Agreement. However, each party may change the address for receipt of notice by giving written notice in accordance with this paragraph. Notices delivered personally will be deemed communicated at the time of delivery. Mailed notices will be deemed communicated one (1) day after mailing.

Article XXII Authority to Sign

- 50) The representative of Contractor whose signature is affixed to this Agreement affirms that he has been duly authorized to bind Contractor to the terms of this Agreement by his signature.
- 51) The representative of Jackson County whose signature is affixed to this Agreement affirms that he has been duly authorized to bind Jackson County to the terms of this Agreement by his signature.

WHEREAS, both parties acknowledge that they have received a copy of this Agreement and agree to abide by the conditions stated herein.

Jackson County Board of Commissioners

By:

Jackson County Commissioner

Jackson County Commissioner

Jackson County Commissioner

Contractor

By:

Contractor

CERTIFICATE OF AVAILABILITY OF FUNDS

Based on the particular circumstances of this Project, it has been determined that this contract is a "continuing contract" for purposes of R.C. 5705.41. As such, I certify that ______, the amount required to meet the contract, obligation, or expenditure for fiscal year ______, and ______, the amount required to meet the contract, obligation, or expenditure for fiscal year ______, has been (or will be for funds to be paid in ______) lawfully appropriated for the purpose, and is (or will be for funds to be paid in ______) in the treasury or in process of collection to the credit of the Fund #______, free from any outstanding obligation or encumbrance.

Tiffany Ridgeway Auditor, Jackson County

PROPOSAL NOTES

1. STEEL PRODUCTS MADE IN THE UNITED STATES

Domestic steel use requirements as specified in Ohio Revised Code §153.011 apply to this project. Copies of §153.011 can be obtained from any of the offices of the department of administrative services or through http://codes.ohio.gov/orc/153.011.

2. PREVAILING WAGES ON STATE PROJECTS WITH NO FEDERAL-AID (Should this project contain Federal-aid funds then Federal Prevailing Wages must be paid. Contact the appropriate Federal funding agency for language.)

This contract is subject to Ohio Prevailing Wage Laws, Chapter 4115 of the Ohio Revised Code and the Contractor and all subcontractors shall comply with all provisions contained therein or as otherwise provided by this note. The Contractor guarantees that the prevailing wage scale to be paid to all laborers and mechanics employed on this contract shall be in accordance with the schedule of the prevailing hourly wage and fringe benefits as determined by the Ohio Department of Commerce for the county in which the work is being performed. The failure to pay prevailing wages to all laborers and mechanics employed on this project shall be considered a breach of contract. Such a failure may result in the revocation of the contractor's and/or subcontractor's certificate of qualification and debarment. A schedule of the most current prevailing wage rates may be accessed by logging in/registering with the Ohio Department of Commerce, Labor and Worker Safety Division, Wage and Hour Bureau at the following web address:

Wage & Hour | Ohio Department of Commerce

The Contractor and all subcontractors shall compensate the employees on this contract at a pay rate not less than the hourly wage and fringe rate listed on the website noted above, for the applicable job classification or as may be modified by the Ohio Department of Commerce, Division of Labor and Worker Safety Wage and Hour Bureau, when new prevailing rates are established.

Overtime shall be paid at one and one-half times the basic hourly rate for any hours worked beyond forty hours during a pay week. The Contractor and all subcontractors shall pay all compensation by company check to the worker and fringe benefit program.

The wage and fringe rates determined for this project or as may be later modified, shall be posted by the Contractor in a prominent and accessible place on the project, field office, or equipment yard where they can be easily read by the workers or otherwise made available to the workers. On the first pay date of contract work the Contractor and all subcontractors shall furnish each employee covered by prevailing wage a completed form (WHPW-1512) in accordance with section 4115.05 of the Ohio Revised Code, showing the classification, hourly pay rate, and fringes, and identifying the public authority's Prevailing Wage Coordinator, if such employees are not covered by a collective bargaining agreement or understanding between employers and bona fide organizations of labor. These forms shall be signed by the Contractor or subcontractor and the employee and kept in the Contractor's or subcontractor's payroll files.

The Contractor and all subcontractors shall submit to the Prevailing Wage Coordinator, certified payrolls on form WHPW-1512 or equivalent, in accordance with sections 4115.07 and 4115.071 (C) of the Ohio Revised Code, three weeks after the start of work and every subsequent week until the completion of the contract. Additionally, a copy of the "Apprentice Certification" obtained from the Ohio State Apprenticeship Council, must accompany all certified payrolls submitted, for all apprentices working on this project. Upon completion of the contract and before the final payment, the Contractor shall submit to the Prevailing Wage Coordinator a final wage affidavit in accordance with section 4115.07 of the Ohio Revised Code stating that wages have been paid in conformance with the minimum rates set forth in the contract. Please be aware that it is ultimately the responsibility of the Contractor to ensure that all laws relating to prevailing wages in Chapter 4115 of the Ohio Revised Code are strictly adhered to by all subcontractors.

The Contractor and all subcontractors shall make all of its payroll records available for inspection, copying or transcription by any authorized representative of the contracting agency. Additionally, the Contractor and all subcontractors shall permit such representatives to interview any employees during working hours while the employee is on the job.

3. UNRESOLVED FINDING FOR RECOVERY

The Contractor affirmatively represents to the local contracting authority that it is not subject to a finding for recovery under Ohio Revised Code §9.24, or that it has taken the appropriate remedial steps required under §9.24 or otherwise qualifies under that section. The Contractor agrees that if this representation is deemed to be false, the contract shall be void ab initio as between the parties to this contract, and any funds paid by the state hereunder shall be immediately repaid to the local contracting authority, or an action for recovery may be immediately commenced by the local government and/or for recovery of said funds.

4. OHIO WORKERS' COMPENSATION COVERAGE

The Contractor must secure and maintain valid Ohio workers' compensation coverage until the project has been finally accepted by the local contracting authority. A certificate of coverage evidencing valid workers' compensation coverage must be submitted to the local contracting authority before the contract is executed.

The Contractor must immediately notify the local contracting authority, in writing, if it or any subcontractor fails or refuses to renew their workers' compensation coverage. Furthermore, the Contractor must notify the local contracting authority, in writing, if it's or any of its subcontractor's workers' compensation policies are canceled, terminated or lapse.

The failure to maintain valid workers' compensation coverage shall be considered a breach of contract which may result in the Contractor or subcontractor being removed from the project, withholding of pay estimates and/or termination of the contract.

5. DRUG-FREE WORKPLACE PROGRAM

In accordance with Ohio Revised Code §153.03 and during the life of this project, the Contractor and all its Subcontractors that provide labor on the Project site must be enrolled in and remain in good standing in the Ohio Bureau of Worker's Compensation ("OBWC") Drug-Free Workplace Program ("DFWP") or a comparable program approved by the OBWC.

6. OHIO PREFERENCE

In accordance with Ohio Revised Code §164.05 (A)(6), to the extent practicable, the Contractor and subcontractor shall use Ohio products, materials, services and labor in connection with this project.

7. BID GUARANTY

In accordance with Ohio Revised Code §153.54, the contractor shall file with the bid a bid guaranty in the form of either: 1) a bond for the full amount of the bid, or 2) a certified check, cashier's check, or letter of credit equal to 10% of the bid.

8. OHIO ETHICS LAW

Contractor agrees that it is currently in compliance and will continue to adhere to the requirements of Ohio Ethics law as provided by Section 102.03 and 102.04 of the Ohio Revised Code.

9. STATE OF OHIO EQUAL EMPLOYMENT OPPORTUNITY REQUIREMENTS

NOTICE TO CONTRACTORS:

The provisions of the Ohio Administrative Code (OAC) 123:2-3-02 through 124:2-9 regarding Equal Employment Opportunity on State Construction Contracts and Stateassisted Construction Contracts, and OAC 123:2-3-02 through 123:2-9 regarding Equal Employment Opportunity are applicable to this project, and each contractor will be required to comply in all aspects of these provisions.

CERTIFICATE OF COMPLIANCE FOR EEO PURPOSES:

All prime contractors must secure a valid Certificate of Compliance from the Department of Administrative Services, Equal Opportunity Division, prior to execution of a construction contract.

- a. Does this bidder have a valid Certificate of Compliance? ____Yes ____No
- b. If "No" to the above, will this bidder be able to obtain a valid Certificate of Compliance prior to the execution of a contract? ____Yes ___No

Bidder must provide a "Yes" answer to one or the other of the above questions.

BIDDER'S EEO COVENANTS:

Throughout its performance of any contract awarded to it on this project, the prime contract bidder agrees to the following covenants:

1) The contractor will not discriminate against any employee or applicant for employment because of race, color, religion, national origin, ancestry or sex. The contractor will take affirmative action to ensure that applicants are employed, and that employees are treated during employment without regard to their race, color, religion, national origin, ancestry or sex. Such action shall include, but is not limited to, the following: Employment, upgrading, demotion, or transfer; recruitment or recruitment advertising; layoff or termination; rates of pay or other forms of compensation; and selection for training, including apprenticeship.

The contractor agrees to post in conspicuous places, available to employees and applicants for employment, notices to be provided setting forth the provisions of this nondiscrimination clause.

- 2) The contractor will in all solicitations or advertisements for employees placed by or on behalf of the prime contractor, state that all qualified applicants will receive consideration for employment without regard to race, color, religion, national origin, ancestry or sex.
- 3) The contractor will send to each labor union or representative of workers with which it has a collective bargaining agreement or other contract or understanding, a notice to be provided by the County advising the said labor union or workers' representatives of the contractor's commitments under this covenant and shall post copies of the notice in conspicuous places available to employees and applicants for employment.
- 4) The contractor will comply with all provisions of the Ohio Department of Administrative Services, Equal Opportunity Division and with the implementing rules, regulations and applicable orders of the County Equal Employment Opportunity Coordinator.
- 5) The contractor agrees to fully cooperate with the County, the County Equal Employment Opportunity Coordinator and with any other official or agency, or the State or Federal government which seeks to eliminate unlawful employment discrimination, and with all other State and Federal efforts to assure equal employment practices under its contract and the contractor shall comply promptly with all requests and directions from the County, the County Equal Employment Opportunity Coordinator and any of the State of Ohio officials and agencies in this regard, both before and during construction.
- 6) Full cooperation as expressed in clause (5), above, shall include, but not be limited to, being a witness and permitting employees to be witnesses and complainants in any proceeding involving questions of unlawful employment practices, furnishing all information and monthly utilization work hour reports required by the OAC 123: 2-9-01 and by the rules, regulations and orders of the

County Equal Employment Opportunity Coordinator pursuant thereto, and permitting access to its books, records, and accounts by the County and the County Equal Employment Opportunity Coordinator for purposes of investigation to ascertain compliance with such rules, regulations and orders.

7) In the event of the contractor's noncompliance with the nondiscrimination clauses of its contract or with any of the said rules, regulations, or orders, its contract may be canceled, terminated, or suspended in whole or in part and the contractor may be declared ineligible for further Contracts in accordance with procedures authorized in OAC 123:2-3 through 2-9 and such other sanctions may be instituted and remedies invoked, as provided in OAC 123:2-3 through 2-9 or by regulation, or order of the County Employment Opportunity Coordinator, or as otherwise provided by law.

In the event that its contract is terminated for a material breach of OAC 123:2-3 through 2-9 the contractor shall become liable for any and all damages which shall accrue to Jackson County as a result of said breach.

- 8) The contractor will require the inclusion of language reflecting these same eight covenants within every subcontract or purchase order it executes in the performance of its contract unless exempted by rules, regulations or orders of the County Employment Opportunity Coordinator issued pursuant to O.A.C. 123:2-3-02 so that these provisions will be binding upon each subcontractor or vendor. The contractor will take such actions as the Administering Agency may direct as a means of enforcing such provisions, including sanctions for noncompliance; provided, however, that in any litigation with a subcontractor, vendor or other party as a result of such directions by the County, the contractor may be requested to protect the interests of the County.
 - a. The prime contract bidder hereby adopts the foregoing covenants? ____Yes ____No

BIDDER'S CERTIFICATION:

The undersigned, being a duly authorized officer of the prime contract bidder, does hereby certify to and agree with the foregoing statements and covenants regarding its subscription to the State's Equal Employment Opportunity Requirements for Construction Contracts.

Signature of Authorized Officer

__/__/_ Date

Title

PLEASE NOTE: Only a bidder possessing a valid certificate will be awarded a contract pursuant to Chapter 153 of the Revised Code by an owner referred to in section 153.01 of the Revised Code. Application shall be made at least ten working days prior to the date that the bidder expects to receive the certificate. The bidder's failure to elect one of the two Bidder's Affirmative Action Requirements, adopt the Bidder's EEO Covenants, and complete the foregoing certification may cause the bidder's proposal to be rejected as being non-responsive to the State's Equal Employment Opportunity Requirements and in non-compliance with the State Equal Employment Opportunity Bid Conditions. In addition, the bidder must, prior to the execution of a contract, submit to the local subdivision a valid Certificate of Compliance for Equal Employment Opportunity purposes.

APPENDIX "A"

Geotechnical Exploration Report

General Tibbets Street Extension

City of Jackson, Ohio

Prepared By:

Geotechnical Consultants, Inc. 720 Green Crest Drive Westerville, Ohio 43081

August 28, 2024

GEOTECHNICAL CONSULTANTS INC. MAIN OFFICE 720 Green Crest Drive Westerville, OH 43081 614.895.1400 phone 614.895.1171 fax YOUNGSTOWN OFFICE

8433 South Avenue Building 1, Suite 1 Boardman, OH 44514 330.965.1400 **phone** 330.965.1410 **fax** DAYTON OFFICE 2155 Bellbrook Avenue Xenia, OH 45385 937.736.2053 phone

www.gci2000.com

September 11, 2024

Mr. John Stabler Jackson County Commissioners 25 E. South Street Jackson, Ohio 45640 email: John.Stabler@JacksonCountyOhio.com

Reference: General Tibbets Street Extension Soils Assessment Jackson, Ohio GCI Project No. 24-G-29227

Dear Mr. Stabler:

As you requested and authorized, Geotechnical Consultants, Inc. (GCI) completed borings for the proposed General Tibbets Street extension in Jackson, Ohio. We performed our work in general accordance with our proposal dated April 30, 2024 (GCI Proposal No. PQ008003). The purpose of this letter is to summarize the results of our boring program and to discuss the impact of the encountered soil and groundwater conditions on the proposed roadway extension project. Available for our use was a plan showing the proposed roadway alignment.

PROJECT DESCRIPTION

Existing General Tibbets Street currently extends about 1,000 feet east off Veterans Drive. The project consists of extending the existing General Tibbets Street to the east and then south where it will connect to McCarty Lane. The new roadway alignment will be about 3,500 feet long. The aerial map below shows the proposed roadway extension.

Aerial Photograph Courtesy Google Earth (4-24-2023)

The roadway site is mostly open agricultural land with some trees along the west side of the alignment in areas. Salt Lick Creek is east of the proposed roadway alignment.

SUBSURFACE CONDITIONS

Geotechnical Consultants, Inc, (GCI) mobilized a truck-mounted rotary drill rig to the site on July 19, 2024 and drilled four (4) standard penetration test borings (B-7 to B-10) along the south end of the proposed roadway alignment. GCI returned to the site on July 20, 2024 with a track-mounted rotary drill rig and completed the remaining borings (B-1 to B-6). The ten (10) borings extended to a depth of 10 feet below existing grade.

The test boring logs, a summary table of encountered subsurface conditions, and a boring location plan are attached in the appendix. We summarize the encountered subsurface findings below. Refer to the individual boring logs for more detailed subsurface information at specific boring locations.

Surface Cover

Borings B-1 and B-2 (north end of the alignment) and borings B-8 to B-10 (south end of the alignment) encountered stone at the surface of the site. The stone extended to a depth of 1 foot at the north end of the alignment and to depths of between 1 and 3 feet at the south end of the alignment with depths increasing towards McCarty Lane. Borings B-3 to B-7 encountered 0.2 feet to 0.3 feet of topsoil at the surface.

Borings B-2, B-3, and B-5 encountered fill materials below the topsoil cover, extending to depths of between 1 and 3 feet below grade. The fill consisted of brown, stained brown, and brown mottled gray lean clay with sand (CL using the ASTM Unified Soil Classification System) to sandy lean clay with gravel (CL), and silt (ML). The fill in boring B-3 contained trace amounts of topsoil and vegetation. Standard penetration testing showed the fill to be medium stiff to stiff in cohesive consistency.

Natural Soils

The borings encountered natural soils below the surface cover consisting of brown, brown mottled gray, and gray lean clay (CL), lean clay with sand (CL), and sandy lean clay (CL). The sand content was fine-grained and the upper zone of the natural soils had variable staining. Random layers of silty fine sand (SM) were encountered within the lean clays. The upper zone of soils in borings B-9 and B-10 may be of fill origin. Standard penetration testing showed the lean clays to be medium stiff to very stiff in cohesive consistency. The exception was boring B-7, which showed the lean clays to be soft and to contain trace vegetation to 6 feet below grade. Borings B-1 to B-4, B-7, B-9, and B-10 terminated in lean clay at a depth of 10 feet below grade.

Borings B-5, B-6, and B-8 encountered brown silty fine sand (SM) below the lean clay at respective depths of 5 feet, 6 feet, and 8.5 feet below grade. Standard penetration testing showed the silty fine sand to be medium dense in cohesionless density. The silty fine sand in borings B-5 and B-8 contained layers of lean clay. Borings B-5, B-6, and B-8 terminated within sand at a depth of 10 feet below grade.

Bedrock

Bedrock was not encountered within the drilled boring depths (up to 10 feet).
Groundwater Seepage

Groundwater seepage was encountered within the silty fine sand deposits in borings B-5 and B-8 at respective depths of 5 and 8.5 feet below grade. Groundwater had dissipated from within the drilled boreholes at the time the borings were completed. The remaining borings did not encounter seepage during drilling and the borings were dry at completion of drilling.

The soil samples were characterized as moist to very moist with wet conditions where seepage was encountered. Note that groundwater levels and moisture conditions can vary with changes in season and in response to precipitation events.

LABORATORY TEST RESULTS

We assigned a laboratory soil testing program on select retrieved split-spoon samples consisting of moisture content and index testing. We also assigned testing on bulk bag samples obtained from boring B-2, B-5, and B-8 locations. We summarize the results of the laboratory testing below and attach results of the testing in the appendix.

Moisture content testing showed the upper soils to have water contents of between 16.5% and 28.3%. Atterberg testing showed the upper fill and natural site soils had liquid limits of between 24% and 51% and plastic limits of between 19% and 22% for a plastic index range of between 2% and 29%. Gradation testing showed the soils to consist primarily of fine grained soils (silt and clay) with classifications of lean clay (CL), lean clay with sand (CL), silt (CL), and fat clay (CH).

We performed Standard Proctor and CBR testing on bulk bag samples obtained from borings B-8 and B-12 locations. The results showed optimum dry densities of 107.8 pcf and 101.0 pcf, respectively at respective optimum moisture contents of 18.7% and 22.0%. California Bearing Ratio testing showed CBR values of 5.2 and 4.1 with respective swells of 1.2% and 1.8%. The B-8 and B-12 bulk samples also had pH values of 8.3 and 5.9 with organic contents of 2.2% and 3.1%, and resistivity values of 2,300 ohm-cm and 3,800 ohm-cm respectively. We also tested a mixture of the upper 2 split-spoon samples from borings B-1, B-2, and B-3, which showed a resistivity of 2,000 ohm-cm with a pH of 6.4.

CONSTRUCTION COMMENTS AND RECOMMENDATIONS

Based on our findings, it is GCI's opinion that the proposed roadway subgrade can be constructed with some geotechnical considerations, as discussed below.

Excavations

The existing natural site soils and fills can be excavated with conventional track hoe and hydraulic equipment. We would classify the site natural lean clays as OSHA Type C soils due to the silty sand layers in the lean clays and the silty sand deposits. All site excavations should comply with current OSHA regulations with regards to layback geometry and benching.

Groundwater

We encountered groundwater seepage from within the upper zone of the silty sand deposits in borings B-5 and B-8 at respective depths of 5 and 8.5 feet below grade. The encountered water had dissipated by completion of drilling activities and the remaining borings were dry. As such, GCI does not anticipate groundwater seepage will be a

significant impact on the roadway construction. If seepage is encountered, subgrades should include finger trench drains with positive drainage.

Excavations should be dewatered to allow construction and backfilling in dry conditions. We anticipate that seepage can be handled by sump pumps strategically placed within the excavations during construction and trench drains with positive drainage incorporated within the pavement design to help maintain a stable working surface and drainage control. Note that seepage and moisture conditions may change from those encountered during drilling, in response to seasonal changes, and in response to precipitation events.

Roadway Subgrades

With properly prepared subgrades, as discussed below, GCI recommends pavements be designed using a CBR value of up to 4 for the local municipal pavement.

Vegetation, topsoil, and organic or unstable soil should be removed from below embankment alignment areas to expose non-organic subgrade conditions. New roadway subgrades should be cleared in accordance with ODOT specifications. **Topsoil can be stockpiled on site for reuse in green spaces or otherwise hauled off site.**

Following topsoil/vegetation stripping operations, the borings suggest exposed subgrades will consist of brown and brown mottled gray lean clay soils (both fill and natural), with stone fill at the north and south ends of the alignment. The fill materials are not known to have been placed over firm and stable ground and in a controlled manner with compaction testing to verify suitable compaction. As such, there is a settlement risk associated with the fill and potential soft subgrades directly below them. To eliminate these settlement risks would require the existing fill to be removed and backfilled with structural fill. Non-organic portions of the removed fill can be reused for structural fill. Alternatively, the existing fill can remain in place for roadway support if it is firm and stable and provided the County accepts risks associated with leaving the fill in place. Provided the fill is non-organic and passes a proof-roll, it is GCI's opinion that future settlement risks would be minor. These risks could be lessened further by incorporating a geogrid directly below the pavement base course aggregate (minimum strength equal to or better than that of Tensar TX-160).

Once stripping operations are complete and the fill is removed if desired, subgrades should be proof-rolled to identify is soft/unstable subgrades are present. If subgrades are stable, no stabilization is needed and fill placement or pavement stone base can continue as planned. Soft/unstable areas encountered during proof rolling operations should be brought to a firm and stable condition prior to fill placement and pavement base course placement. Careful routing of construction traffic is advised to help minimize pumping of near-surface very moist, clayey soils. This will be exacerbated where silty sand lenses are close to the working surface.

Under favorable drying conditions (late spring, summer and early fall), a subgrade stabilization program consisting of disking of the soils to enhance air drying followed by recommended compaction is expected to be sufficient for shallow unstable areas. Deeper soft soil conditions such as was encountered in boring B-5 may require undercuts or more extensive means of stabilization. The actual depth will be determined in the field based on proof-roll observations. Air-drying may not be practical during wet seasons (late fall, winter and early spring), and we expect undercuts backfilled with structural fill

(including stone and possibly geogrid) or the use of lime, lime kiln dust (LKD), or cement to be required to complete subgrade stabilization. The use of lime, LKD, cement, or other means of stabilization beyond air-drying should be reviewed by our office prior to use.

Once the subgrade is stable, place and compact required fill to create roadway subgrades and embankment slopes. New embankment fill should be free of organics, cobbles, boulders, and miscellaneous debris. The fill should be placed in loose lifts not exceeding 8 inches thick and compacted in accordance with ODOT specifications. A final proof-roll should be performed on prepared subgrade embankments directly prior to the pavement aggregate base course placement (and geogrid if used) and flat-wheel rolled prior to aggregate placement.

FINAL

The recommendations contained in this report are the opinion of GCI based on the subsurface conditions found in the borings and available development information. It should be noted that the nature and extent of variations between borings might not become evident until construction. If variations then appear evident, it will be necessary to re-evaluate the recommendations of this report.

This report has been prepared for design purposes only and may not be sufficient to prepare an accurate bid document. If you have any questions or need for any additional information, please contact our office. It has been a pleasure to be of service to you on this project, and we hope to continue our services through construction.

Respectfully submitted, Geotechnical Consultants, Inc.

M

Todd R. Meek, P.E., LEED AP Vice President - Director of Engineering

Curty 2. Miller

Curtis L. Miller, P.E. In-House Reviewer

- Distribution: Mr. John Stabler @ Jackson County Mr. John Wetzel @ Prime Civil LLC GCI Project File 24-G-29227
- Attachments: General Notes for Soil Sampling and Classifications Site Location Map and Boring Location Plan Summary of Encountered Subsurface Conditions Test Boring Logs (B-1 to B-10) Laboratory Test Results

 MAIN OFFICE

 720 Green Crest Drive

 Westerville, OH 43081

 614.895.1400

 phone

 614.895.1171

 fax

YOUNGSTOWN OFFICE

8433 South Avenue Building 1, Suite 1 Boardman, OH 44514 330.965.1400 **phone** 330.965.1410 **fax** DAYTON OFFICE 2155 Bellbrook Avenue Xenia, OH 45385 937.736.2053 phone

www.gci2000.com

GENERAL NOTES FOR SOIL SAMPLING AND CLASSIFICATIONS

BORINGS, SAMPLING AND GROUNDWATER OBSERVATIONS:

Drilling and sampling were conducted in accordance with procedures generally recognized and accepted as standard methods of exploration of subsurface conditions. The borings were drilled using a truck-mounted drill rig using auger boring methods with standard penetration testing performed in each boring at intervals ranging from 1.5 to 5.0 feet. The stratification lines on the logs represent the approximate boundary between soil types at that specific location and the transition may be gradual.

Water levels were measured at drill locations under conditions stated on the logs. This data has been reviewed and interpretations made in the text of the report. Fluctuations in the level of the groundwater may occur due to other factors than those present at the time the measurements were made.

The Standard Penetration Test (ASTM-D-1586) is performed by driving a 2.0 inch O.D. split barrel sampler a distance of 18 inches utilizing a 140 pound hammer free falling 30 inches. The number of blows required to drive the sampler each 6 inches of penetration are recorded. The summation of the blows required to drive the sampler for the final 12 inches of penetration is termed the Standard Penetration Resistance (N). Soil density/consistency in terms of the N-value is as follows:

COHESION	NLESS DENSITY	COHESIVE	CONSISTENCY
0-10	Loose	0-4	Soft
10-30	Medium Dense	4-8	Medium Stiff
30-50	Dense	8-15	Stiff
50 +	Very Dense	15-30	Very Stiff
	-	30 +	Hard

SOIL MOISTURE TERMS

Soil Samples obtained during the drilling process are visually characterized for moisture content as follows:

MOISTURE CONTENT	DESCRIPTION
Damp	Soil moisture is much drier than the Atterberg plastic limit (where soils are cohesive) and generally more than 3% below Standard Proctor "optimum" moisture conditions. Soils of this moisture generally require added moisture to achieve proper compaction.
Moist	Soil moisture is near the Atterberg plastic limit (cohesive soils) and generally within ±3% of the Standard Proctor "optimum" moisture content. Little to no moisture conditioning is anticipated to be required to achieve proper compaction and stable subgrades.
Very Moist	Soil moisture conditions are above the Atterberg plastic limit (cohesive soils) and generally greater than 3% above Standard Proctor "optimum" moisture conditions. Drying of the soils to near "optimum" conditions is anticipated to achieve proper compaction and stable subgrades.
Wet	Soils are saturated. Significant drying of soils is anticipated to achieve proper compaction and stable subgrades.

SOIL CLASSIFICATION PROCEDURE:

Soil samples obtained during the drilling process are preserved in plastic bags and visually classified in the laboratory. Select soil samples may be subjected to laboratory testing to determine natural moisture content, gradation, Atterberg limits and unit weight. Soil classifications on logs may be adjusted based on results of laboratory testing.

Soils are classified in accordance with the ASTM version of the Unified Soil Classification System. ASTM D-2487 "Classification of Soils for Engineering Purposes (Unified Soil Classification System) describes a system for classifying soils based on laboratory testing. ASTM D-2488 "Description and Identification of Soil (Visual-Manual Procedure) describes a system for classifying soils based on visual examination and manual tests.

Soil classifications are based on the following tables (see reverse side):

		PARTICLE SIZE DEFINITION	CONSTITUE	ENT MODIFIERS
Boulders:		>12"	Trace	Loss than 5%
Gravel:	Coarse:	3/4" to 3"	Few	5-10%
Sand:	Fine: Coarse	No. 4 (3/16″) to 3/4″ No. 10 (2.0mm) to No. 4 (4.75mm)	Little Some	15-25% 30-45%
	Medium Fine	No. 40 (0.425mm) to No. 10 (2.0mm) No. 200 (0.074mm) to No. 40 (0.425mm)	Mostly	50-100%
Silt & Clay		<0.074mm; classification based on overall plasticity; in general clay particles <0.005mm		

GENERAL NOTES FOR SOIL SAMPLING AND CLASSIFICATIONS

ASTM/UNIFIED SUIL CLASSIFICATION AND SYMBOL CHART										
(more than	COA 50% of ma	RSE-GRAINED SOILS aterials is larger than No. 200 sieve size)								
		Clean Gravel (less than 5% fines)								
	GW	Well-graded gravel, gravel-sand mixtures, little or no fines								
GRAVELS	GP	Poorly-graded gravels, gravel sand mixtures, little or no fines								
More than 50% of coarse fraction larger		Gravels with fines (more than 12% fines)								
than No. 4 sieve size	GM	Silty gravels, gravel-sand-silt mixtures								
	GC	Clayey gravels, gravel-sand-clay mixtures								
		Clean Sands (Less than 5% fines)								
	SW	Well-graded sands, gravelly sands, little or no fines								
SANDS	SP	Poorly-graded sands, gravelly sands, little or no fines								
More than 50% of coarse fraction smaller		Sands with fines (More than 12% fines)								
than No. 4 sieve size	SM	Silty sands, sand-silt mixtures								
	SC	Clayey sands, sand-clay mixtures								
Less than 5 percent Greater than 12 percent 5 to 12 percent										
(50% or m	FII ore of mat	NE-GRAINED SOILS erial is smaller than No. 200 sieve size)								
	ML	Inorganic silts and very fine sands, rock flour, silty or clayey fine sands or clayey silts with slight plasticity								
SILTS AND CLAYS Liquid Limit less than 50%	CL	Inorganic clays or low to medium plasticity, gravelly clays, sandy clays, silty clays, lean clays								
	CL-ML	Inorganic silty clay of slight plasticity, P.I. between 4 and 7								
	OL	Organic silts and organic silty clays of low plasticity								
SILTS AND CLAYS	MH	Inorganic silts, micaceous or diatomaceous fine sandy or silty soils, elastic silts								
Liquid Limit 50% or greater	CH Inorganic clays of high plasticity, fat clays									
	OH Organic clays or medium to high plasticity, organic silts									
HIGHLY ORGANIC SOILS	PT	Peat and other highly organic soils								

Summary of Encountered Subsurface Conditions

General Tibbets Street Extension Jackson, Ohio GCI Job Number: 24-G-29227

							Denth to			
Borehole	Surface	Topsoil Thickness	Bottom of Fill Cover	Groundwater: Level Encountered (ft)	Groundwater: Level at Completion (ft)	Depth to Top of	Top of Sandy	Depth to Top of Fat	Depth to Top of Silty	Bottom of Boring
	Layer	(ft.)	(feet)	Depth	Depth	(ft)	Lean Clay	Clay (ft)	Sand (ft)	Depth (ft)
B- 1	Stone					1.0	(11)			10.0
B- 2	Stone		3.0			3.0	1944			10.0
B- 3	Topsoil	0.3	1.0		7222	3 212 0	1.0			10.0
B- 4	Topsoil	0.3				0.3		7.0		10.0
B- 5	Topsoil	0.3	2.0	5			2.0		5.0	10.0
B- 6	Topsoil	0.3				: :::: ::	0.3		6.0	10.0
B- 7	Topsoil	0.2					0.2	22		10.0
B- 8	Stone		्यत	8.5	(++	الشبور	1.0		8.5	10.0
B- 9	Stone					2.0				10.0
B-10	Stone				(111)	3.0				10.0

Average Topsoil Depth at boring locations: 0.3 feet

PRC	JECT NAM	ME <u>Genera</u>	ıl Tibb	ets S	treet	Exte	nsion -	- Ja	<u>ickson</u>	, O ł	nio				BO	RING NO.	B- 1
CU	FNT	Jackso	n Cour	ntv C	'nmm	nissia	ners	PRC)J. 24	-G-29227	SU D4	RF. ELEV.	7/20/2024				
				ny C					D		TT 1	14		-U-2)221			
]	GROU <u>None</u> FEF FEF FEF	ET BELOW SU ET BELOW SU ET BELOW SU	LK OB JRFACE JRFACE JRFACE	AT C AT 24 AT	OMPL 4 HOU	ION ETION RS HOUR	N .S	Tra Few Litt Son	ropoi ce v le ne stly	rtio]	ns Used Less than 5% 5 to 10% 15 to 25% 30 to 45% 50 to 100%	0 - 10 - 30 - 50 +	10 1b esion 10 30 50	Wt. x 30 ⁴⁴ Iless Densi Lo Medium De De Very De	ty ose nse nse nse	on 2^{+} O.D. Cohesive ($\begin{array}{c} 0 & - & 4 \\ 4 & - & 8 \\ 8 & - & 15 \\ 15 & - & 30 \\ 30 & + \end{array}$	Sampler Consistency Soft Medium Stiff Stiff Very Stiff Hard
	LOCAT	ION OF BO	RING		Se	ee Bo	ring L	oca	tion P	lan							
DEPTH	Pocket Penetrometer (tsf)	Sample Depths From To	Type of Sample	Blo on Fr 0-6	ows pe Samp om 6-12	r 6" ler To 12-18	Moistur Densit or Consis	re y st.	Strata Change Depth*			Rema Rock	SOII rks in c-colo	L IDENTIFIC clude color, t r, type, cond	CATI type o ition,	ON of soil, etc. hardness	
									1.0		Stone (12")						
		1.0-3.0	SS	52	3	3	Moist Very Moist	to	1.0		Brown Mott plasticity, lit	led Grattle fine	ay Le e sane	ean Clay wi d	ith Sa	and (CL) - n	noderate
	1.25	3.0-5.0	SS	2 3	2	3	Very Moist Moist	to									
5	; 																
	1.5	8.5-10.0	SS	3	3	3	Very Moist Moist	to									
1()							_+	10.0								
												BC	OTTO	OM OF BC	PRIN	'G: 10.0'	

PRO	JECT NAM	/E <u>Genera</u>	<u>al Tibb</u>	ets S	treet	Exte	ension - J	ackson	, Ohio					B	ORING NO	B- 2
A U		Teslar	C		٩						PROJ	J.	C 20227	SU	JRF. ELEV.	7/20/2024
	ENT	Jackso	n Cour	nty C	omn	115510	ners				NO.		G-29227	_ D.	ATE DRILLED	1/20/2024
	GROU	JND WAT	ER OB	BSER	VAT	ION		Propor	tions Used		140) lb V	Wt. x 30"	fall	on 2" O.D.	Sampler
						ETIO		race	Less than	5% C	Cohes	sionl	ess Densi	ty	Cohesive C	Consistency
<u> </u>	<u>None</u> FEE	T BELOW SU	IRFACE	AIC	OMPL	LE HOI	N Fe	ttle	5 to 1 15 to 2	5% 1	0 -	10 30	Lo Medium De	oose ense	$ \begin{array}{r} 0 - 4 \\ 4 - 8 \\ \hline \end{array} $	Soft Medium Stiff
-	FEE	ET BELOW SU	JRFACE	AT 24	4 HOU	JRS	So	ome	30 to 4	5% 3	- 0	50	De	ense		Stiff Very Stiff
	FEE	ET BELOW SU	JRFACE	AT		HOUR	LS M	ostly	50 to 10	0% 5	50 +		Very De	ense	30 +	Hard
	LOCAT	ION OF BO	RING		Se	ee Bo	ring Loc	ation P	lan							
H	Pocket	Sample	Туре	Blo	ows pe	er 6" Mer	Moisture	Strata			2	SOIL	IDENTIFI	CAT	ION	
EP	(tsf)	Depths	of	Fr	om	То	or	Change		R	lemark	ks incl	lude color,	type	of soil, etc.	
Д		From To	Sample	0-6	6-12	12-18	Consist.	Depth*		_	Rock-	-color,	, type, cond	ition	, hardness	
									Stone (1	2")						
								1.0								
	4.5	1.0-3.0	SS	6	6	4	Moist		FILL: E	Brown,	Stain	ied B	Brown, and	d Br	own Mottled	Gray Lean
				4					plasticit	n Sand v. little	i (CL to so	.) to some f	Sandy Lea	in C	sand, trace gr	avel:
									Contains	trace t	topso	oil			, 0	,
								3.0	\otimes							
	3.0	3.0-5.0	SS	2	4	4	Moist	5.0	Brown M	Mottled	l Gra	y Lea	an Clay w	ith S	Sand (CL) - m	noderate
				4					plasticit	y, little	fine	sand	; contains	son	ne staining wi	th depth
5																
	2.0	8.5-10.0	SS	3	3	3	Moist									
								10.0								
10								10.0								
											BO	отто	M OF BC)R IN	JG· 10.0'	
											DO	110	In or be		10.0	
1																
1																
1																
<u> </u>		~							1							

PRC	JECT NAM	ME <u>Genera</u>	al Tibb	ets S	treet	Exte	ension - J	ackson,	Ohio			BORING NO.	B- 3
CLI	ENT	Jackso	<u>n Cour</u>	<u>nty C</u>	Comm	nissio	PROJ NO.		SURF. ELEV DATE DRILLED	7/20/2024			
	GRO	UND WAT	ER OB	BSER	VAT	ION	т	Propor	tions Used	140 Cohes) lb Wt. x 30" sionless Densi	fall on 2" O.D. ty Cohesive (Sampler Consistency
1 - -	None FEH FEH FEH	ET BELOW SU ET BELOW SU ET BELOW SU	JRFACE JRFACE JRFACE	AT C AT 24	OMPL 4 HOU	ETIO RS HOUR	N Fe Li So SS M	ace w ttle ome ostly	Less than 5% 5 to 10% 15 to 25% 30 to 45% 50 to 100%	0 - 10 - 30 - 50 + 0 - 10 - 10 - 10 - 10 - 10 - 10 - 10	10 Lo 30 Medium De 50 De Very De	$\begin{array}{c} 0 & -4 \\ 0 & -$	Soft Medium Stiff Stiff Very Stiff Hard
	LOCAT	ION OF BC	ORING		Se	ee Bo	ring Loc	ation Pl	an				
DEPTH	Pocket Penetrometer (tsf)	Sample Depths From To	Type of Sample	Blo on Fr 0-6	ows pe Samp om 6-12	r 6" oler To 12-18	Moisture Density or Consist.	Strata Change Depth*		Remark Rock-	SOIL IDENTIFIC ts include color, t color, type, condi	CATION ype of soil, etc. tion, hardness	
	4.5	0.0-1.5	SS	5	6	5		0.3	Topsoil	un Sandı	ean Clay		
							Maist	1.0	with Sand (CL); co	ntains gravel; t	race vegetation/t	opsoil
							WOISt		Gray Lean (moderate pl	Clay with asticity,	h Sand (CL) to little to some f	Sandy Lean Cla ine sand; contair	y (CL) - ns layers of
	4.0	2.0-3.5	SS	5	5	5	Moist		silty fine sa	nd (SM)			
	4.5	4055	55	6	6	6	Moist						
	4.5	4.0-3.3	- 33	0	0	0	WIOISt						
5													
	4.5	8.5-10.0	SS	11	10	10	Moist						
10								10.0	Ø				
										BO	TTOM OF BO	RING: 10.0'	
1													
1													
<u> </u>	-		1	I		I	• .	<u> </u>	1				

PRO	JECT NAM	Æ <u>Genera</u>	<u>ıl Tibb</u>	ets S	treet	Exte	nsion -	Jackson	<u>, C</u>	Dhio				BOR	RING NO.	B- 4
CLIE	NT	Jackso	n Cour	ıtv C	omm	issio	ners				PRC NO.)J. 24 .	-G-29227	SUR DAT	EF. ELEV TE DRILLED	7/20/2024
	GROI		FR OR	SFR	VAT	ION		Propo	rti	ons Used	14	0 lb	Wt x 30"	fall o	n 2" O D 9	Sampler
	UNU			SER			Г	Trace	1 11	Less than 5%	Cohe	esion	less Densit	ty	Cohesive C	Consistency
<u> </u>	one FEE	T BELOW SU T BELOW SU	JRFACE JRFACE	AT C AT 24	OMPL 4 HOU	ETION RS	N F L S	ew ittle ome		5 to 10% 15 to 25% 30 to 45% 50 to 100%	$ \begin{array}{r} 0 & - \\ 10 & - \\ 30 & - \\ 50 & + \\ \end{array} $	10 30 50	Loo Medium Der Der Verv Der	ose nse nse	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	Soft Medium Stiff Stiff Very Stiff Hord
	LOCATI	ON OF BO	RING	AI _	l	e Bo	ring Lo	cation P	Plai	n	50 1		very Der	lise	30 1	Tialu
	Pocket		T	Blo	ws pe	r 6"	Moisture					COL	IDENTIEL		N	
PTH	Penetrometer	Depths	of	on	Samp	ler	Density	Change			Rema	son rks ind	clude color, t	ype of	soil, etc.	
D	(tsf)	From To	Sample	0-6	om 6-12	10 12-18	or Consist.	Depth*			Rock	c-colo	r, type, condi	tion, h	ardness	
	3.75	0.0-1.5	SS	5	5	3	Moist	0.3		Topsoil						
										Brown Mott Sandy Lean	led Gra Clay (ay to CL) -	Brown Lea	an Cla plastic	ey with Sand city, little to	d (CL) to some f-m
										sand; contai	ns mor	e san	d with dept	th	,,,	
	1.75	2.0-3.5	SS	3	4	4	Moist									
	2.0	4055	66	5	5	5	M									
	5.0	4.0-3.3	55	3	3	3	MOISt									
5																
								7.0		Light Gray]	Fat Cla	v (Cl	H) - high pl	astici	tv	
										Light Oluj I	ui eiu	<i>.</i>) (01	i) ingir pi		• 5	
	4.5	8.5-10.0	SS	7	10	10	Moist									
								10.0								
10																
											BO	OTTO	OM OF BO	RINC	G: 10.0'	

PRO	JECT NAM	AE <u>Genera</u>	<u>al Tibb</u>	ets S	treet	Exte	nsion	, Ohio	BORING NO. B-5	
		T I	C		٩					PROJ. SURF. ELEV
	2NI	Jackso	n Cour	ny C	omn	115510	ners			NO
	GROU	UND WAT	ER OB	SER	VAT	ION		Propo	tions Used	140 lb Wt. x 30" fall on 2" O.D. Sampler
1 	None fee fee fee	ET BELOW SU ET BELOW SU ET BELOW SU	JRFACE JRFACE JRFACE	AT C AT 24 AT	OMPL 4 HOU	LETIOI URS HOUR	N F L S S M	race ew .ittle ome fostly	Less than 5% 5 to 10% 15 to 25% 30 to 45% 50 to 100%	Conestoniess DensityConestore Consistency $0 - 10$ Loose $0 - 4$ Soft $10 - 30$ Medium Dense $4 - 8$ Medium Stiff $30 - 50$ Dense $15 - 30$ Very Stiff $50 +$ Very Dense $30 +$ Hard
	LOCAT	ION OF BO	RING		Se	ee Bo	ring Lo	cation P	lan	
DEPTH	Pocket Penetrometer (tsf)	Sample Depths From To	Type of Sample	Blo or Fr 0-6	ows pe Samp om 6-12	er 6" oler To 12-18	Moisture Density or Consist.	Strata Change Depth*		SOIL IDENTIFICATION Remarks include color, type of soil, etc. Rock-color, type, condition, hardness
	3.0	0.0-1.5	SS	3	3	3	Moist	0.3	Topsoil	
	2.5	2.0-3.5	SS	2	2	2	Moist	2.0	FILL: Stain moderate pl	asticity, some f-m to coarse sand, few gravel dy Lean Clay (CL) - moderate plasticity, some fine
5	1.0-2.0	4.0-5.5	SS	2	2	2	Moist to Wet	5.0	Water Seer	page @ 5'
		8.5-10.0	SS	5	6	6	Moist	10.0	lean clay wi	ith sand (CL)
										BOTTOM OF BORING: 10.0'

PRO	JECT NAN	Æ <u>Genera</u>	<u>ıl Tibb</u>	ets S	treet	Exte	nsion	Jackson	, Ohio			BORING NO.	B- 6
CLI	ENT	Jackso	n Cour	ıtv C	omm	issio	ners			PRO. NO.	J. 24-G-29227	SURF. ELEV DATE DRILLED	7/20/2024
	CROI			SEB	VAT	ION		Propo	rtions Used	14	$\frac{1}{10000000000000000000000000000000000$	fall on 2" O D	Samplar
	UNU		ER OD	OSEN	VAI	IUN	Г	Trace	Less than 5%	Cohe	sionless Densit	ty Cohesive (Consistency
<u> </u>	None FEE FEE FEE	T BELOW SU T BELOW SU T BELOW SU	JRFACE JRFACE JRFACE	AT C AT 24 AT	OMPL 4 HOU	ETION RS HOUR	N F L S S N	èew Little Some Aostly	5 to 10% 15 to 25% 30 to 45% 50 to 100%	0 - 10 - 30 - 50 +	10 Loo 30 Medium Der 50 Der Very Der	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Soft Medium Stiff Stiff Very Stiff Hard
	LOCAT	ON OF BO	RING		Se	e Bo	ring Lo	cation P	lan		•		
DEPTH	Pocket Penetrometer (tsf)	Sample Depths From To	Type of Sample	Blc on Fr	ows pe Samp om 6-12	r 6" Ier To 12-18	Moisture Density or Consist	Strata Change Depth*		Remar Rock-	SOIL IDENTIFIC ks include color, t -color, type, condi	CATION ype of soil, etc. tion, hardness	
	4.0	0.0-1.5	SS	6	7	7	Moist	0.3	Topsoil				
		0.0 1.2				·			Brown Sand sand; contai	ly Lean ns some	Clay (CL) - mc e gray mottling	derate plasticity with depth	, some f-m
	4.5	2.0-3.5	SS	8	8	9	Moist						
5	4.5	4.0-5.5	SS	9	9	10	Moist	6.0					
									Brown Silty	Sand (S	SM) - fine sand	, some silt	
10		8.5-10.0		5	5	5	Moist	10.0					
										BO	OTTOM OF BO	RING: 10.0'	

PRO	JECT NAM	/E <u>Genera</u>	<u>ıl Tibb</u>	ets S	treet	Exte	ension -	Jackson	, Ohio			BORING NO.	B- 7
CUI	INT	Iackso	n Cou	ntv (omn	niccio	nors			PROJ. NO 24 -	-C-29227	SURF. ELEV.	7/19/2024
						115510				NO	-G-23227	DATE DRILLED	
	GROU	JND WAT	ER OB	BSER	XVA'I	ION	Т	Propo	rtions Used	140 lb Cohesion	Wt. x 30" fa less Density	all on 2'' O.D. / Cohesive (Sampler Consistency
1 -	None fee Fee Fee	ET BELOW SU ET BELOW SU ET BELOW SU	JRFACE JRFACE JRFACE	AT C AT 24	OMPL 4 HOU	LETIO JRS HOUR	N F L S	Sew Little Some Mostly	5 to 10% 15 to 25% 30 to 45% 50 to 100%	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	Loos Medium Dens Dens Very Dens	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Soft Medium Stiff Stiff Very Stiff Hard
	LOCAT	ION OF BC	RING		S	ee Bo	ring Lo	cation P	lan				
DEPTH	Pocket Penetrometer (tsf)	Sample Depths From To	Type of Sample	Blo on Fr	ows pe Samp om	er 6" oler To	Moisture Density or	Strata Change Depth*		SOIL Remarks inc Rock-color	L IDENTIFICA	ATION pe of soil, etc. on, hardness	
	2.75	0.0-1.5	SS	0-6	6-12	$\frac{12-18}{2}$	Consist. Moist		Topsoil		·, ·, F ·, · · · · · ·		
		0.0 1.3						2.0	Brown Mott plasticity, lit	led Gray Le tle fine sanc	an Clay with l; contains st	h Sand (CL) - n tained zones (p	noderate ossible fill)
	1.0	2.0-3.5	SS	0	1	0	Very Moist	2.0	Gray Sandy sand, trace g	Lean Clay (gravel; staine	CL) - moder ed to 4'; trace	rate plasticity, s e organic veget	ome fine ation to 6'
5	1.0	4.0-5.5	SS	3	2	2	Very Moist						
	1.75	8.5-10.0	SS	2	1	2	Very Moist						
10								10.0	<u> </u>				
										BOTTO	OM OF BOR	RING: 10.0'	
		<i></i>					• •	<u> </u>					

PRO	PROJECT NAME General Tibbets Street Extension - Jackson, Ohio										BORING NO.	B- 8		
~ 1		Teslere	C		٩	• •				PROJ.	SURF. ELEV.	7/10/2024		
	ENT	Jackso	n Cour	nty C	omm	115510	ners			NO. <u></u> NO	DATE DRILLED	<u> </u>		
	GROU	JND WAT	ER OB	SER	VAT	ION		Propor	tions Used	140 lb Wt. x 30" fall on 2" O.D. Sampler				
None FEET BELOW SURFACE AT COMPLETION FEET BELOW SURFACE AT 24 HOURS FEET BELOW SURFACE AT HOURS							N F L S S M	Trace Tew Little Some Aostly	Less than 5% 5 to 10% 15 to 25% 30 to 45% 50 to 100%	0 - 10 Lo 10 - 30 Medium De 30 - 50 De 50 + Very De	$\begin{array}{c cccc} ty & Cohesive C \\ ose & 0 & - & 4 \\ nse & 4 & - & 8 \\ nse & 8 & - & 15 \\ nse & 15 & - & 30 \\ nse & 30 & + \\ \end{array}$	Consistency Soft Medium Stiff Stiff Very Stiff Hard		
	LOCAT	ION OF BO	RING		Se	e Bo	ring Lo	cation P	lan					
DEPTH	Here Penetrometer (tsf)Sample Depths From ToType of SampleBlows per 6" on Sampler From To 0-6Moist Dens on 6-12							Strata Change Depth*	Strata SOIL IDENTIFICATION Change Remarks include color, type of soil, etc. Depth* Rock-color, type, condition, hardness					
							Moist	1.0	<pre>[2] Stone (12"); [2] [2]</pre>	some topsoil at the su	rface			
	1.0-1.5	2.0-3.5	SS	4	3	4	Moist	1.0	Erown Sanc sand, trace §	ly Lean Clay (CL) - mo gravel; contains layers o	oderate plasticity, of silty fine sand	, few fine (SM)		
5	3.0-4.0	4.0-5.5	SS	3	3	4	Moist							
		85100	CC	2	2	2	Moist		Water Seej	page @ 8.5'				
		8.5-10.0		5	5	5	WOISt	8.5	Brown Silty sandy lean c	y Sand (SM) - fine sand Clay (CL)	, some silt; conta	ins layers of		
10										BOTTOM OF BO	RING: 10.0'			

PRC	JECT NAM	/E <u>Genera</u>	<u>al Tibb</u>	ets S	street	Exte	ension - J	Jackson	, Ohio			_ B0	ORING NO	B-9	
CUI	ENIT	Iackso	n Cou	ntv (omn	niccio	nors			PROJ		SU	JRF. ELEV	7/19/2024	
						115510				NO.	<u>24-0-27227</u>	_ D.		<u></u>	
	GROU	JND WAT	ER OB	SER	KVA'I	TON		Propo	tions Used	140 Cohes) lb Wt. x 30' sionless Dens	' fall itv	on 2'' O.D. S Cohesive C	Sampler Consistency	
<u> </u> -	None FEE	ET BELOW SU ET BELOW SU	JRFACE JRFACE	AT C AT 24	COMPL 4 HOU	LETIOI JRS	N Fe Li So	race ew ittle ome	Less than 5% 5 to 10% 15 to 25% 30 to 45%	0 - 10 - 1 30 -	10 L 30 Medium D 50 D	oose ense ense	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	Soft Medium Stiff Stiff Very Stiff	
	FEE	ET BELOW SU	JRFACE	AT		HOUR	LS M	lostly	50 to 100%	50 +	Very D	ense	30 +	Hard	
	LOCAT	ION OF BO	PRING	DI	S	ee Bo	ring Loc	cation P	lan						
DEPTH	Pocket Penetrometer (tsf)	Sample Depths From To	Type of Sample	on Fr 0-6	ows pe n Samp com 6-12	r 6" oler To 12-18	Density or Consist.	Strata Change Depth*		Remark Rock-o	SOIL IDENTIF s include color, color, type, cond	CAT type dition	ION of soil, etc. , hardness		
									Stone (24")						
								2.0							
									Brown Mott Clay with G to coarse sat	led Gray ravel (Ć 1d, trace	y Lean Clay v L) - moderate to little grave	vith S plas el; sta	Sand (CL) to S sticity, little to ained to 3.5';	Sandy Lean some fine upper zone	
	3.0-4.0	3.0-5.0	SS	4	4	4	Moist		may be fill		C				
5	5														
							1								
	1.5-2.5	8.5-10.0	SS	3	3	3	Very Moıst								
								10.0							
10)							10.0	¥//						
										BO	TTOM OF B	ORIN	NG: 10.0'		
		e		<u> </u>			• •	<u> </u>							

PRO	ROJECT NAME General Tibbets Street Extension - Jackson, Ohio										В	ORING NO.	<u>B-10</u>
CLI	ENT	Jackso	n Cour	ntv C	Comm	iissio	ners			PROJ. NO. 2 4	si 4-G-29227 D	URF. ELEV ATE DRILLED	7/19/2024
—	CROI			SEB	VAT	ION		Propo	tions Used	140 lk	Wt x 30" fall	on 2" O D	Samplar
None FEET BELOW SURFACE AT COMPLETION							N Fe	race ew ittle	Less than 5% 5 to 10% 15 to 25%	Cohesio 0 - 10 10 - 30	nless Density Loose Medium Dense	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Sampler Consistency Soft Medium Stiff
_	I EL FEE	ET BELOW SU	JRFACE	AT AT	inou	HOUR	S N	ome Iostlv	30 to 45% 50 to 100%	30 - 50 50 +	Dense Verv Dense	15 - 30 30 +	Very Stiff Hard
	LOCAT	ION OF BO	RING		Se	ee Bo	ring Loo	ation P	lan				
T.	Pocket	Sample	Type	Blo	ows pe	er 6"	Moisture	Strata		50	IL IDENTIFICAT	ION	
EPTI	Penetrometer (tsf)	Depths	of	on Fr	i Samp	oler To	Density	Change		Remarks in	nclude color, type	of soil, etc.	
D	(131)	From To	Sample	0-6	6-12	12-18	Consist.	Depth*	NUM 1	Rock-col	or, type, condition	, hardness	
									Stone (36")				
	2.0-2.5	3.0-5.0	SS	4	4	4	Moist	3.0	Brown Mot	tled Grav I	ean Clay (CL)	to Lean Clav	with Sand
				5					(CL) - mode	erate plastic	city, trace to litt	le fine to coar	rse sand;
									depth; uppe	r zone may	be fill	more gray co	ioi witti
5							1						
	0.5.2.0	2050					* *						
	0.5-3.0	3.0-5.0	SS	3	3	3	Very Moist to)					
							Moist						
10								10.0	/4				
										BOTT	OM OF BORI	NG: 10.0'	
				1		1							

Summary of Laboratory Results

General Tibbets Street Extension Jackson, Ohio GCI Job Number: 24-G-29227

Test Hole	Depth	Water Content (%)	Liquid Limit	Plastic Limit	Plasticity Index	% Fines (< #200 Sieve)	% Clay (< 0.005 mm)	Dry Density (pcf)	Optimum Moisture (%)	C.B.R.	Swell (%)	Organic Content (%)	ASTM Class- ification	ASTM Description
B- 1	1.0	18.7	28	16	12	70.4	25	-	-	-	-	-	CL	Lean Clay With Sand
B- 1	3.0	22.8						-	-	-	-	-		
B- 2	1.0	11.8						-	-	-	-	-		
B- 2	2.0	21.7						-	-	-	-	-		
B- 2	1-5	16.9						115.5	14.5	3.3	0.4	-		
B- 2	3.0							-	-	-	-	-		
B- 3	0.0	8.2	28	15	13	55.7	20	-	-	-	-	-	CL	Sandy Lean Clay
B- 3	2.0	14.7						-	-	-	-	-		
B- 4	0.0	10.0	28	16	12	68.6	21	-	-	-	-	-	CL	Sandy Lean Clay
B- 4	2.0	17.8						-	-	-	-	-		
B- 5	0.0	13.1	30	20	10	57.9	14	-	-	-	-	-	CL	Sandy Lean Clay
B- 5	2.0	15.3						-	-	-	-	-		
B- 6	0.0	14.8	29	17	12	79.0	22	-	-	-	-	-	CL	Lean Clay With Sand
B- 6	2.0	13.3						-	-	-	-	-		
B- 7	0.0	13.6	30	16	14	65.0	23	-	-	-	-	-	CL	Sandy Lean Clay
B- 7	2.0	20.0						-	-	-	-	-		
B- 8	2.0	17.0	NP	NP	NP	31.6	11	-	-	-	-	-	SM	Silty Sand
B- 8	4.0	13.5						-	-	-	-	-		
B- 9	3.0	14.9						-	-	-	-	-		
B- 9	8.5	17.7						-	-	-	-	-		
B-10	3.0	25.3	38	21	17	86.5	39	-	-	-	-	-	CL	Lean Clay
B-10	8.5	16.7						-	-	-	-	-		
B-5/B-8	1-5	19.5						121.0	12.2	3.1	0.0	-		

Geotechnical Consultants, Inc. - Westerville, Ohio 43081

APPENDIX "B"

CONSTRUCTION PLANS

General Tibbets Street Extension

City of Jackson, Ohio

Prepared By:

Prime Civil, LLC PO Box 798 Chillicothe, Ohio 45601

January 31, 2025

UTILITIES

LISTED BELOW ARE ALL UTILITIES LOCATED WITHIN THE PROJECT CONSTRUCTION LIMITS TOGETHER WITH THEIR RESPECTIVE OWNERS:

AMERICAN ELECTRIC POWER (DISTRIBUTION) 850 TECH CENTER DRIVE GAHANNA, OHIO 43230 (740) 348-5322

AMERICAN ELECTRIC POWER (TRANSMISSION) CITY OF JACKSON WATER DEPT. 8600 SMITHS MILL RD. NEW ALBANY, OHIO 43054 (380) 205-5072

COLUMBIA GAS OF OHIO 843 PIATT AVENUE CHILLICOTHE, OHIO 45601 (740) 772-9131

CITY OF JACKSON ELECTRIC DEPT. 145 BROADWAY STREET JACKSON, OHIO 45640 (740) 288-6881

JACKSON COUNTY WATER DEPT. PO BOX 309 JACKSON, OHIO 45640 (740) 286-5929

UNDERGROUND UTILITIES
CONTACT BOTH SERVICES
CALL TWO WORKING DAYS
BEFORE YOU DIG
CALL
1-800-362-2764 E
(TOLL FREE)
OHIO UTILITIES PROTECTION SERVICE
NON-MEMBERS
MUST BE CALLED DIRECTLY
OIL & GAS PRODUCERS UNDERGROUND
PROTECTION SERVICE CALL: 1-800-925-0988

GLO FIBER 68 EAST MAIN STREET CHILLICOTHE, OHIO 45601 (833) 926-8456

319 WALNUT STREET JACKSON, OHIO 45640 (740) 286-3271

CHARTER COMMUNICATIONS 32 ENTERPRISE DRIVE CHILLICOTHE, OHIO 45601 (740) 648-3027

FRONTIER COMMUNICATIONS 1315 ALBERT STREET PORTSMOUTH, OHIO 45662 (740) 354-0521

JACKSON COUNTY COMMISSIONERS

GENERAL TIBBETS STREET EXTENSION

CITY OF JACKSON JACKSON COUNTY, OHIO

PROJECT DESCRIPTION

PROJECT CONSISTS OF THE CONSTRUCTION OF GENERAL TIBBETS STREET IN THE CITY OF JACKSON, OHIO. THE LENGTH OF NEW CONSTRUCTION SHALL BE 3,573 FEET (±) AND THE LENGTH OF PROPOSED RECONSTRUCTION SHALL BE 291 FEET (±). THE NEW CONSTRUCTION SHALL INCLUDE ROADWAY AND DRAINAGE IMPROVMENTS SUITABLE FOR INDUSTRIAL DEVELOPMENT.

EARTH DISTURBED AREA

PROJECT EARTH D EST. CONTRACTOR NOTICE OF INTENT

2023 SPECIFICATIONS

THE STANDARD SPECIFICATIONS OF THE STATE OF OHIO, DEPARTMENT OF TRANSPORTATION, INCLUDING CHANGES LISTED IN THE PROPOSAL SHALL GOVERN THIS IMPROVEMENT.

INDEX OF SHEETS:

TITLE SHEET	1
SCHEMATIC PLAN	2
TYPICAL SECTIONS	3
GENERAL NOTES	4
MAINTENANCE OF TRAFFIC	5
GENERAL SUMMARY	6
SUBSUMMARIES	7
PROJECT SITE PLAN	8
PLAN & PROFILE (GENERAL TIBBETS STREET)	9 - 16
CROSS-SECTIONS (GENERAL TIBBETS STREET)	17 - 36
INTERSECTION AND DRIVE DETAILS	37 - 38
STORM SEWER PROFILES	39
CULVERT DETAILS	40
TRAFFIC CONTROL	41 - 44
RIGHT OF WAY	45

APPROVED:
DATE:
APPROVED:
DATE:
APPROVED:
DATE:
APPROVED:
DATE:
APPROVED:
DATE:

DISTURBED AREA:	
R EARTH DISTURBED AREA:	
T EARTH DISTURBED AREA:	

3.56 AC 0.25 AC 3.81 AC

PRESIDENT, JACKSON COUNTY COMMISSIONERS VICE PRESIDENT, JACKSON COUNTY COMMISSIONERS JACKSON COUNTY COMMISSIONER MAYOR, CITY OF JACKSON	PROJECT JACKSON COUNTY COMMISSIONERS	GENERAL TIBBETS STREET EXTENSION	CITY OF JACKSON, JACKSON COUNTY, OHIO
SERVICE/SAFETY DIRECTOR, CITY OF JACKSON	TIT SH	ΓLE EET	
	SHEE 1	τ NO. 45	

		REV. BY DATE DESCRIPTION	ORIGINAL ISSUE DATE: 01-31-2025
		P.O. BOX 798	740-253-1618 primecivil.jwetz@gmail.com
AS NOTED	ЛКМ	JKW	JKW
SCALE:	DESIGNED:	DRAWN BY:	CHECKED BY:
PROJECT	JACKSON COUNTY COMMISSIONERS	GENERAL TIBBETS STREET EXTENSION	CITY OF JACKSON, JACKSON COUNTY, OHIO
	TI SH	TLE EET	

- 1 ITEM 441 1-3/4" ASPHALT CONCRETE SURFACE COURSE, TYPE 1, I
- 2 ITEM 441 2-1/4" ASPHALT CONCRETE INTERMEDIATE COURSE, TY
- (3) ITEM 301 4" ASPHALT CONCRETE BASE, PG64-22
- 5 ITEM 304 6" AGGREGATE BASE
- 6 ITEM 659 SEEDING AND MULCHING
- (7) ITEM 204 SUBGRADE COMPACTION

			REV. BY DATE DESCRIPTION	ORIGINAL ISSUE DATE: 01-31-2025
PG64-22 (448) YPE 2, (448)			CHILLICOTHE, OH 45601	740-253-1618 primecivil.jwetz@gmail.com
	ALE: AS NOTED	SIGNED: JKW	AWN BY: JKW	ECKED BY: JKW
	PROJECT SCA	JACKSON COUNTY COMMISSIONERS		CITY OF JACKSON, JACKSON COUNTY, OHIO
		TY SEC SHE	al DNS NO. 15	

GENERAL NOTES

- 1. ALL WORK SHALL BE COMPLETED IN ACCORDANCE WITH APPLICABLE LOCAL, STATE AND FEDERAL CODES, RULES AND REGULATIONS. OBTAIN ALL NECESSARY LOCAL, STATE AND FEDERAL PERMITS AND PAY PERMIT FEES FOR THE WORK OR CONFIRM REQUIRED PERMITS HAVE BEEN OBTAINED BY OTHERS PRIOR TO COMMENCING CONSTRUCTION.
- 2. BE RESPONSIBLE AT ALL TIMES FOR SITE SAFETY IN ACCORDANCE WITH THE LATEST REQUIREMENTS OF THE OCCUPATIONAL HEALTH AND SAFETY AUTHORITY HAVING JURISDICTION.
- COMPLY WITH THE CONDITIONS AND REQUIREMENTS OF THE SOIL 2 EROSION AND SEDIMENTATION CONTROL PLAN. INSTALL ALL CONTROL MEASURES PRIOR TO COMMENCING CONSTRUCTION.
- 4. CALL THE OHIO UTILITY PROTECTION SERVICE (OUPS) AT 1-800-925-0988 AT LEAST 72 HOURS PRIOR TO ANY EXCAVATION TO CONFIRM THE LOCATIONS OF EXISTING BURIED UTILITIES. THIS DOES NOT RELIEVE THE CONTRACTOR OF THE RESPONSIBILITY OF NOTIFYING UTILITY OWNERS WHO MAY NOT BE PART OF THE OUPS ALERT SYSTEM. COORDINATE THE RELOCATION OF EXISTING UTILITIES WITH THE UTILITY OWNER. BE **RESPONSIBLE FOR PROTECTING EXISTING UTILITIES AND REPAIRING** DAMAGE TO EXISTING UTILITIES RESULTING FROM THE WORK. BE RESPONSIBLE FOR THE COSTS OF REPAIRING OR REPLACING ANY DAMAGED UTILITIES AT NO EXPENSE TO THE OWNER.
- PROVIDE TRAFFIC CONTROL BARRICADES, SIGNS, LIGHTS, ETC. IN ACCORDANCE WITH THE LATEST EDITION OF THE MANUAL OF UNIFORM TRAFFIC CONTROL DEVICES AS NECESSARY FOR THE PROTECTION AND SAFETY OF THE PUBLIC. MAINTAIN THESE DEVICES AT ALL TIMES DURING CONSTRUCTION.
- MAINTAIN A CLEAN WORK AREA. THOROUGHLY CLEAN AND/OR SWEEP STREETS AND ROADWAYS AS REQUIRED BY THE GOVERNING AUTHORITY.
- 7. MAINTAIN ACCESS TO EXISTING DRIVEWAYS AND MAIL BOXES DURING CONSTRUCTION. COORDINATE WITH THE AUTHORITIES HAVING JURISDICTION. CONDUCT OPERATIONS TO ENSURE MINIMUM INTERFERENCE WITH ROADS, STREETS, WALKS AND OTHER ADJACENT OCCUPIED OR USED FACILITIES. ANY CLOSURE REQUIRES PERMISSION FROM THE AUTHORITIES HAVING JURISDICTION.
- 8. DO NOT SCALE DRAWINGS TO DETERMINE DIMENSIONS. REFER DISCREPANCIES TO THE ENGINEER FOR CLARIFICATION.
- 9. THE INFORMATION CONTAINED ON THESE DRAWINGS PERTAINING TO EXISTING CONDITIONS, SUCH AS BUT NOT LIMITED TO, UTILITIES, TOPOGRAPHY, SUBSURFACE CONDITIONS, IS FURNISHED SOLELY AS THE BEST INFORMATION AVAILABLE AND ITS ACCURACY IS NOT GUARANTEED. THE USE OF THIS INFORMATION DOES NOT PROVIDE RELIEF FOR ANY **RESPONSIBILITY FOR DAMAGES DUE TO ANY INACCURACIES.**
- 10. ALL REMOVED MATERIALS ARE THE PROPERTY OF THE CONTRACTOR. CLEANUP AND DISPOSE OF ALL EXCESS MATERIALS OFF SITE AT A LOCATION DESIGNATED FOR THIS USE AND IN ACCORDANCE WITH LOCAL REGULATIONS OR AT AN ON SITE LOCATION DESIGNATED BY THE OWNER.
- 11. RESTORE ALL STREET SURFACES, DRIVEWAYS, CULVERTS, ROADSIDE DRAINAGE DITCHES, AND OTHER PUBLIC OR PRIVATE STRUCTURES THAT ARE DISTURBED OR DAMAGED AS A RESULT OF CONSTRUCTION ACTIVITIES TO A CONDITION EQUAL TO OR BETTER THAN EXISTING CONDITIONS AND TO THE SATISFACTION OF THOSE HAVING JURISDICTION, UNLESS NOTED OTHERWISE IN THE PLANS.

ARCHAEOLOGICALLY SENSITIVE AREAS

THERE ARE NO ARCHAEOLOGICALLY SENSITIVE AREAS NEAR THE PROJECT. HOWEVER, SHOULD ANY TYPES OF HISTORIC OR PREHISTORIC ITEMS BE FOUND DURING CONSTRUCTION, THE JACKSON COUNTY PROJECT MANAGER AND PROJECT ENGINEER SHALL BE NOTIFIED IMMEDIATELY.

CONSTRUCTION NOTIFICATION

THE CONTRACTOR WILL ADVISE THE PROJECT ENGINEER A MINIMUM OF TWENTY-ONE (21) DAYS PRIOR TO THE FOLLOWING: THE START OF CONSTRUCTION ACTIVITIES, LANE RESTRICTIONS, LANE CLOSURES AND/OR ROAD CLOSURES. THE PROJECT ENGINEER WILL FORWARD THIS INFORMATION TO THE FOLLOWING:

JACKSON COUNTY BOARD OF COMMISSIONERS PHIL BUFFINGTON (PROJECT MANAGER) (740) 286-3301 projects@jacksoncounty.us

CITY OF JACKSON RANDY EVANS (MAYOR) (740) 286-2201 cityadministration@jacksonohio.us

CLEARING AND GRUBBING

ALTHOUGH THERE ARE NO TREES OR S REMOVAL WITHIN THE LIMITS OF THE F INCLUDED IN THE GENERAL SUMMARY **GRUBBING. ALL PROVISIONS AS SET FOI** THIS ITEM ARE INCLUDED IN THE LUMP CLEARING AND GRUBBING.

WORK LIMITS

THE WORK LIMITS SHOWN ON THESE P CONSTRUCTION ONLY. PROVIDE THE IN WORK ZONE TRAFFIC CONTROL AND W DEVICES REQUIRED BY THESE PLANS WI WORK LIMITS.

CONTINGENCY QUANTITIES

THE CONTRACTOR SHALL NOT ORDER M ITEMS DESIGNATED BY PLAN NOTE TO E ENGINEER" UNLESS AUTHORIZED BY TH LOCATIONS AND OUANTITIES USED FOR INCORPORATED INTO THE FINAL CHANC OF THIS PROJECT.

ITEM 204 - PROOF ROLLING

THE FOLLOWING QUANTITY IS PROVIDE **REQUIRING PROOF ROLLING.**

ITEM 204, PROOF ROLLING

SEEDING AND MULCHING

THE FOLLOWING QUANTITIES ARE PROV CARE OF PERMANENT SEEDED AREAS:

ITEM 659, SEEDING AND MULCHIN

ITEM 659, REPAIR SEEDING AND M (5% OF 6,299 SY PERMANENT SEE

ITEM 659, COMMERCIAL FERTILIZ (1ST APP. - 6,299 SY x 9 SF PER SY (2ND APP. - 6,299 SY x 9 SF PER SY

ITEM 659, LIME (6,299 SY PERMANENT SEEDING A

ITEM 659, WATER (1ST APP. - 6,299 SY x 9 SF PER SY (2ND APP. - 6,299 SY x 9 SF PER SY

APPLY SEEDING AND MULCHING TO AL THE RIGHT-OF-WAY LINES AND WITHIN AREAS OUTSIDE THE RIGHT-OF-WAY LIN OR SLOPE EASEMENT. QUANTITY CALC MULCHING ARE BASED ON THESE LIMIT

EXISTING PAVEMENT TIE-INS

THE CONTRACTOR SHALL VERIFY ALL EX WHERE PROPOSED PAVEMENT IS TO MA

UNSUITABLE FOUNDATION SOILS

IF UNSUITABLE FOUNDATIONS SOILS AF THE PROPOSED ROADBED, THEY SHALL SUITABLE MATERIAL MEETING THE REQ LOCATIONS AND DIMENSIONS WILL BE

THE FOLLOWING CONTINGENCY QUANT GENERAL SUMMARY TO BE USED AS DIF

ITEM 203, EXCAVATION ITEM 203, EMBANKMENT

	AREAS WHERE FILL HEIGHTS ARE GREATER THAN 2 FEET AND LOCALIZED	ALL TESTING AND INSPECTIONS FOR THE EMBANKMENT, SUB-GRADE	025
FOR ITEM 201, CLEARING AND RTH IN THE SPECIFICATIONS UNDER SUM PRICE BID FOR ITEM 201,	FABRIC AND GRANULAR MATERIAL SHOULD BE USED TO STABILIZE THESE AREAS. THE FOLLOWING CONTINGENT QUANTITY SHALL BE USED AS DIRECTED BY THE ENGINEER.	SHALL BE THE RESPONSIBILITY OF THE CONTRACTOR. ALL COMPACTION AND/OR DENSITY TESTS SHALL MEET PROVISIONS OF ITEM NOS. 202, 203, 304, 503 OR 603. INSPECTION SHALL ASSURE COMPLIANCE TO THE APPROPRIATE BID ITEM OF WORK.	ESCRIPTION 01-31-20
LANS ARE FOR PHYSICAL ISTALLATION AND OPERATION OF ALL ORK ZONE TRAFFIC CONTROL HETHER INSIDE OR OUTSIDE THESE	ITEM 203 GRANULAR MATERIAL, TYPE B 1000 CY PART-WIDTH CONSTRUCTION BECAUSE OF THE NECESSITY TO BUILD THIS PROJECT UNDER TRAFFIC AND TO CONSTRUCT THE FULL PAVEMENT WIDTH IN STAGES. EXTREME CARE	THE CONTRACTOR SHALL PROVIDE A SOILS CONSULTANT PRE-QUALIFIED BY ODOT WHO SHALL, THROUGH THE CONTRACTOR, BE RESPONSIBLE FOR ENSURING THAT THE COMPACTION OR DENSITY OF THE EMBANKMENT, BACKFILL OR BASE MATERIALS ARE IN COMPLIANCE WITH THE SPECIFICATIONS. THIS WORK SHALL BE IN ACCORDANCE WITH THE SPECIFICATIONS AND ODOT MANUAL OF PROCEDURES FOR EARTHWORK.	L ISSUE DATE:
 Manuar of a program o	DATE		
MATERIALS OR PERFORM WORK FOR BE USED "AS DIRECTED BY THE HE ENGINEER. THE ACTUAL WORK R SUCH ITEMS SHALL BE GE ORDER GOVERNING COMPLETION	SPECIFICATIONS THE SPECIFICATIONS SET FORTH IN THE MOST CURRENT VERSION OF ODOT'S CONSTRUCTION AND MATERIAL SPECIFICATIONS, LOCATION AND DESIGN MANUAL, AND STANDARD DRAWINGS SHALL BE USED TO ENSURE EROSION AND SEDIMENT CONTROL DURING CONSTRUCTION.	THE SOILS CONSULTANT SHALL PROVIDE NECESSARY TRAINED OPERATORS AND EQUIPMENT AND FURNISH THE PROJECT ENGINEER WITH TWO COPIES OF ACCEPTABLE TEST RESULTS WITHIN THREE DAYS AFTER THE TEST IS TAKEN. THE SOILS CONSULTANT TECHNICIANS SHALL DEMONSTRATE THEIR COMPETENCE TO THE ENGINEER BEFORE WORK BEGINS. THE ENGINEER WILL ORDER THE CONTRACTOR TO REPLACE THE SOILS CONSULTANT IF THEY ARE NOT FULLY VERSED IN THE REQUIRED TESTING PROCEDURES. THE CONSULTANT'S OPERATOR SHALL IMMEDIATELY NOTIFY THE PROJECT ENGINEER OF ANY FAILING TEST, IDENTIFY THE REMEDIAL ACTION	ERVICES REV. BY mail.com
ED TO ADDRESS LOCATIONS 4 HOUR	REVIEW OF DRAINAGE FACILITIES BEFORE ANY WORK IS STARTED ON THE PROJECT AND AGAIN BEFORE ANY FINAL ACCEPTANCE BY THE COUNTY, REPRESENTATIVES OF THE COUNTY AND THE CONTRACTOR, ALONG WITH REPRESENTATIVES OF THE CITY, SHALL MAKE AN INSPECTION OF ALL EXISTING SEWERS WHICH ARE TO REMAIN IN SERVICE AND WHICH MAY BE AFFECTED BY THE WORK. THE CONDITION OF THE EXISTING CONDUITS AND THEIR APPURTENANCE SHALL BE DETERMINED FROM FIELD OBSERVATIONS. RECORDS OF THE INSPECTION SHALL BE KEPT IN WRITING BY THE PROJECT ENGINEER.	PROPOSED AND PROVIDE DOCUMENTATION OF ACCEPTABLE RETEST OF THE FAILED AREA. COMPACTION TESTS SHALL BE TAKEN FOR EACH 500 CY OF EMBANKMENT, EVERY 1,000 SY OF SUB-GRADE PREPARED, AND EACH 1,000 SY OF SUB-BASE PLACED. THE ENGINEER MAY REQUIRE MORE FREQUENT TESTING IF CONDITIONS WARRANT. UPON COMPLETION OF THE ITEM, THE SOILS CONSULTANT SHALL ALSO PROVIDE THE ENGINEER WITH TWO COPIES OF AN INSPECTION REPORT BY A PROFESSIONAL ENGINEER, WHICH CONTAINS THE TESTING RESULTS AND THE CONSULTANT'S CONCLUSIONS AS TO SPECIFICATION COMPLIANCE FOR ALL CONTRACT COMPACTION OR DENSITY WORK. THE SOILS CONSULTANT SHALL PROVIDE THE ENGINEER WITH A DAILY INSPECTION REPORT WHICH WILL INCLUDE	REAL BESIGN & CONTRUCTION S P.O. BOX 798 CHILLICOTHE, OH 45601 18 primecivil.jwetz@g
VIDED TO PROMOTE GROWTH AND NG 6,299 SY	ALL NEW CONDUITS, INLETS, CATCH BASINS AND MANHOLES CONSTRUCTED AS A PART OF THE PROJECT SHALL BE FREE OF ALL FOREIGN MATTER AND IN A CLEAN CONDITION BEFORE THE PROJECT WILL BE ACCEPTED BY THE LOCAL REPRESENTATIVES.	COMPACTION/DENSITY TEST TAKEN, ITEMS OF WORK INSPECTED, PAY ITEMS COMPLETED AND FINAL PAY QUANTITIES. THE SOILS CONSULTANT'S FIELD REPRESENTATIVE SHALL WORK UNDER THE DIRECTION OF A REGISTERED PROFESSIONAL ENGINEER WHO WILL	PROFESSIG 740-253-16
MULCHING 315 SY DING AREA) ER 0.9 TON @ 20 LBS PER 1,000 SF) Y @ 10 LBS PER 1,000 SF)	ALL EXISTING SEWERS INSPECTED INITIALLY BY THE ABOVE MENTIONED PARTIES SHALL BE MAINTAINED AND LEFT IN A CONDITION REASONABLY COMPARABLE TO THAT DETERMINED BY THE ORIGINAL INSPECTION. ANY CHANGE IN THE CONDITION RESULTING FROM THE CONTRACTOR'S OPERATIONS SHALL BE CORRECTED BY THE CONTRACTOR TO THE SATISFACTION OF THE ENGINEER.	MONITOR THE EMBANKMENT CONSTRUCTION, BASE PLACEMENT AND TRENCH BACKFILL. THE REGISTERED PROFESSIONAL ENGINEER SHALL BE AVAILABLE TO DISCUSS QUESTIONS AND PROBLEMS WHICH MAY ARISE RELATIVE TO THE EMBANKMENT AND BASE CONSTRUCTION AND SHALL ALSO ATTEND ANY PROGRESS MEETINGS FOR THE PROJECT. THE FINAL INSPECTION REPORT SHALL BE SIGNED BY THE REGISTERED PROFESSIONAL ENGINEER, AND CERTIFY THAT ALL COMPACTION AND DENSITY TESTS	AS NOTED JKW JKW
1.3 ACRE(S) AREA x 9 SF PER SY)	PAYMENT FOR ALL OPERATIONS DESCRIBED ABOVE SHALL BE INCLUDED IN THE CONTRACT PRICE FOR THE PERTINENT 611 DRAINAGE ITEMS.	PROVIDED BY THE CONTRACTOR MEETS ALL APPLICABLE CONTRACT REQUIREMENTS. A LUMP SUM QUANTITY OF "ITEM SPECIAL, MISC.: SOIL CONSULTANT FOR	CALE: ESIGNED: RAWN BY: HECKED BY
34 MGAL @ 300 GAL. PER 1,000 SF) (@ 300 GAL. PER 1,000 SF) L AREAS OF EXPOSED SOIL BETWEEN THE CONSTRUCTION LIMITS FOR	DUST CONTROL THE CONTRACTOR SHALL FURNISH AND APPLY WATER FOR DUST CONTROL AS DIRECTED BY THE ENGINEER. THE FOLLOWING CONTINGENCY QUANTITIES HAVE BEEN INCLUDED FOR DUST CONTROL PURPOSES:	FIELD TESTING AND INSPECTION" HAS BEEN CARRIED TO THE GENERAL SUMMARY AND THE PRICE BID SHALL BE FULL COMPENSATION FOR ALL LABOR, MATERIALS, EQUIPMENT AND INCIDENTALS NECESSARY FOR PROPER PERFORMANCE OF THIS WORK.	
XISTING PAVEMENT ELEVATIONS ATCH.	ITEM 616, WATER 10 MGAL		PROJECT DUNTY COMMISSIONERS SETS STREET EXTENSION DN, JACKSON COUNTY, OHIO
RE ENCOUNTERED IN THE AREA OF . BE REMOVED AND REPLACED WITH QUIREMENTS OF 203.02. THE AS DETERMINED BY THE ENGINEER.			JACKSON CC NERAL TIBE
TITIES HAVE BEEN INCLUDED IN THE RECTED BY THE ENGINEER.			U B
1,400 CY 1,400 CY			
			GENERAL NOTES
			SHEET NO. 4 / 45

ITEM 614, MAINTAINING TRAFFIC

LENGTH AND DURATION OF LANE CLOSURES AND RESTRICTIONS SHALL BE AT THE APPROVAL OF THE ENGINEER. IT IS THE INTENT TO MINIMIZE THE IMPACT TO THE TRAVELING PUBLIC. LANE CLOSURES OR RESTRICTIONS OVER SEGMENTS OF THE PROJECT IN WHICH NO WORK IS ANTICIPATED WITHIN A REASONABLE TIME FRAME, AS DETERMINED BY THE ENGINEER, SHALL NOT BE PERMITTED. THE LEVEL OF UTILIZATION OF MAINTENANCE OF TRAFFIC DEVICES SHALL BE COMMENSURATE WITH WORK IN PROGRESS.

BEFORE WORK BEGINS, THE CONTRACTOR SHALL SUBMIT TO THE ENGINEER THE NAMES AND TELEPHONE NUMBERS OF A PERSON OR PERSONS WHO CAN BE CONTACTED TWENTY-FOUR HOURS PER DAY BY THE PROJECT ENGINEER AND ALL INTERESTED POLICE AGENCIES. THIS PERSON OR PERSONS SHALL BE RESPONSIBLE FOR PLACING OR REPLACING NECESSARY TRAFFIC CONTROL DEVICES IN ACCORDANCE WITH THE "OHIO MANUAL OF UNIFORM TRAFFIC CONTROL DEVICES".

THE CONTRACTOR SHALL PROVIDE, ERECT AND MAINTAIN SIGNS AND SIGN SUPPORTS, AS DETAILED IN THE OHIO MANUAL OF UNIFORM TRAFFIC CONTROL DEVICES.

ALL WORK AND TRAFFIC CONTROL DEVICES SHALL BE IN ACCORDANCE WITH 614 AND OTHER APPLICABLE PORTIONS OF THE SPECIFICATIONS, AS WELL AS THE OHIO MANUAL OF UNIFORM TRAFFIC CONTROL DEVICES. PAYMENT FOR ALL LABOR, EQUIPMENT AND MATERIALS SHALL BE INCLUDED IN THE LUMP SUM CONTRACT PRICE FOR 614, MAINTAINING TRAFFIC, UNLESS SEPARATELY ITEMIZED IN THE PLANS.

PHASE I

ACCESS.

PHASE II

METHODS.

JACKSON.

				KEV. BY DATE DESCRIPTION	ORIGINAL ISSUE DATE: 01-31-2025
PRIMF CIVII		PROFESSIONAL DESIGN & CONSTRUCTION SERVICES	P O ROX 708	CHILLICOTHE. OH 45601	740-253-1618 primecivil.jwetz@gmail.com
AS NOTED					JKW
SCALE:					CHECKED BY:
PROJECT	JACKSON COUNTY COMMISSIONERS		CENERAL TIRRETS STRFET EXTENSION		CITY OF JACKSON, JACKSON COUNTY, OHIO
MA	AIN DF	ITE TR	EN Al	AN FFI	CE
	sн 5		T N 4	10. 15)

SEQUENCE OF CONSTRUCTION

MUCH OF THE PROPOSED ROADWAY IS ON NEW ALIGNMENT AND WILL NOT IMPACT EXISTING TRAFFIC PATTERNS CONSTRUCTION EXCEPT AT THE TIE-INS TO EXISTING ROUTES.

PHASE I SHALL INCLUDE CONSTRUCTION OF THE BULK OF THE PROJECT. GENERALLY, THE PROJECT WILL BE CONSTRUCTED IN PHASE I WITH THE EXCEPTION OF THE TIE-INS OF ROADS AND A SHORT SECTION OF GENERAL TIBBETS DRIVE THAT NEEDS TO BE PHASED TO MAINTAIN LOCAL

AT THE END OF PHASE I CONSTRUCTION, THE TIE-IN AT MCCARTY LANE SHALL BE CONSTRUCTED USING PART-WIDTH CONSTRUCTION METHODS.

TRAFFIC WILL BE MAINTAINED ON EXISTING ROUTES THROUGHOUT COMPLETION OF PHASE I.

DURING PHASE II THE TIE-IN AT JOHN WOLLUM DRIVE AND RECONSTRUCTION OF THE SHORT SECTION OF GENERAL TIBBETS DRIVE NOT COMPLETED IN PHASE I WILL BE COMPLETED USING PART-WIDTH CONSTRUCTION METHODS.

AT THE END OF PHASE II CONSTRUCTION, THE TIE-IN AT VETERANS DRIVE SHALL BE CONSTRUCTED USING PART-WIDTH CONSTRUCTION

IF THE CONTRACTOR SO ELECTS, HE MAY SUBMIT ALTERNATE METHODS FOR THE MAINTENANCE OF TRAFFIC, PROVIDED THE INTENT OF THE ABOVE PROVISIONS ARE FOLLOWED AND NO ADDITIONAL INCONVENIENCE TO THE TRAVELING PUBLIC RESULTS THEREFROM. NO ALTERNATE PLAN SHALL BE PLACED INTO EFFECT UNTIL APPROVAL HAS BEEN GRANTED IN WRITING BY THE JACKSON COUNTY BOARD OF COMMISSIONERS OFFICE AND THE CITY OF

			SHEET N	UMBER				GRAND		
	4 7		40 44			OFFICE	ITEM	TOTAL	UNIT	DESCRIPT
	, , , , , , , , , , , , , , , , , , ,					CALCS				
							201	LS		CLEARING AND GRUBBING
	29	2					202	292	FT FT	PIPE REMOVED, 24" AND UNDER
	50)					202	50		HEADWALL REMOVED
	10	7					202	107	SY	PAVEMENT REMOVED, CONCRETE
	1,09	99					202	1,099	SY	PAVEMENT REMOVED
	2						202	2	EACH	
							202	I	LACH	
	1,400 3,42	20					203	4,820	CY	EXCAVATION
	1,400 2,39	97					203	3,797	CY	EMBANKMENT
	1,000						203	1,000	CY	GRANULAR MATERIAL, TYPE B
	10,1	47					204	10,147	SY UD	SUBGRADE COMPACTION
	4						204	4		
	4		7				601	11	CY	ROCK CHANNEL PROTECTION, TYPE C WITH FILTER
	10						616	10	MGAL	WATER
	6,299						659	6,299	SY	SEEDING AND MULCHING
	315						659	315		
	1.3						659	1.3	ACRE	LIME
	34						659	34	MGAL	WATER
							-			
						50.000	832	LS		STORM WATER POLLUTION PREVENTION PLAN
						50,000	032	50,000	EACH	EROSION CONTROL
							503	LS		UNCLASSIFIED EXCAVATION
			34				518	34	CY	POROUS BACKFILL WITH FILTER FABRIC
	2.6	2					602	2.62	CY	CONCRETE MASONRY
		0					C			
	18	8					611	188		12" CONDUIT, TYPE A
	44	1					611	441	FT	18" CONDUIT, TYPE C
	71						611	71	FT	24" CONDUIT, TYPE C
	56	`					611	56	FT	2' X 5' CONDUIT, TYPE A, 706.05
	4						611	4	EACH	CATCH BASIN, NO. 2-3
	24	8					252	248	ГТ	ΕΠΙ ΓΡΕΡΤΗ ΡΑΥΕΜΕΝΤ ΚΑΙΜΙΝΟ
	1,18	31					301	1,181	CY	ASPHALT CONCRETE BASE, PG64-22
	1,9	15					304	1,915	CY	AGGREGATE BASE
	65	1					407	651	GAL	TACK COAT
		_						522		
	68	2 A					441	684	<u> </u>	ASPHALT CONCRETE SURFACE COURSE, TYPE 1, PG64-22 (446) ASPHALT CONCRETE INTERMEDIATE COURSE, TYPE 2 (448)
		•					11-			
	2						630	2	EACH	REMOVAL OF GROUND MOUNTED SIGN AND REERECTION
			108				630	108	FT	GROUND MOUNTED SUPPORT, NO. 3 POST
			54				630	54	SF	SIGN, FLAT SHEET
			0.74				642	0.74	MII F	CENTER LINE
			1.47				642	1.47	MILE	EDGE LINE, 4"
			62				642	62	FT	STOP LINE
							SPECIAL	LS		MISC.: SOIL CONSULTANT FOR FIELD TESTING AND INSPECTION
							1			
							672	LS		MAINTAINING TRAFFIC
							624	LS		MOBILIZATION
L	·			<u> </u>		1	-	i		

ION	SEE SHEET				
	NO.			PTION	01-31-2025
				DESCRI	TE: 0
					NL ISSUE DA
				DATE	ORIGINA
				REV. BY	
		MF CIVII	DESIGN & CONSTRUCTION SERVICES	P.O. BOX 798 LLICOTHE. OH 45601	primecivil.jwetz@gmail.com
		PRI	PROFESSIONAL	CHI	740-253-1618
		AS NOTED	JKW	ЛКW	JKW
		SCALE:	DESIGNED:	DRAWN BY:	СНЕСКЕД ВУ:
		PROJECT	JACKSON COUNTY COMMISSIONERS	GENERAL TIBBETS STREET EXTENSION	CITY OF JACKSON, JACKSON COUNTY, OHIO
J	4	S	gene UMN	ERAL /IAR\	(
		(SHEET	г NO. 45	•

_					202				252	630	
UBSUMMARY	REFERENCE	PIPE REMOVED, 24" AND UNDER	PIPE REMOVED, OVER 24"	HEADWALL REMOVED	PAVEMENT REMOVED, CONCRETE	PAVEMENT REMOVED	GATE REMOVED	MANHOLE REMOVED	FULL DEPTH PAVEMENT SAWING	REMOVAL OF GROUND MOUNTED SIGN AND REERECTION	SHEET NO.
NS S		FT	FT	EACH	SY	SY	EACH	EACH	FT	EACH	
DITIO	R-1	69									9
SUC	R-2			1							9
3STI	R-3				56						9
100	R-4								98		9
ANI	R-5	17									9
RES	R-6						1				10
	R-7	71									12
RUC	R-8						1				13
FST	R-9		50								14
	R-10							1			15
AVC	R-11	25									15
EM(R-12	50									15
	R-13				22						15
	R-14					788					15
	R-15				29						16
	R-16								94		16
	R-17	60									16
	R-18									1	15
	R-19									1	16

										202	252	20	03	301	30	54	407	4	41	
AY SUBSUMMARY	REFERENCE	STATION	SIDE	TYPE SEE SHEET 38 FOR TYPICAL DETAIL)	DRIVEWAY LENGTH "L1"	APRON LENGTH "L2"	DRIVEWAY WIDTH "W"	LT SIDE RADII (LOOKING FROM &) "R1"	RT SIDE RADII (LOOKING FROM E) "R2"	PAVEMENT REMOVED	FULL DEPTH PAVEMENT SAWING	EMBANKMENT	EXCAVATION	4" ASPHALT CONCRETE BASE, PG64-22	6" AGGREGATE BASE	8" AGGREGATE BASE	TACK COAT	1-3/4" ASPHALT CONCRETE SURFACE COURSE, TYPE 1, PG64-22 (448)	2-1/4" ASPHALT CONCRETE INTERMEDIATE COURSE, TYPE 2 (448)	SHEET NO.
/EW					FT	FT	FT	FT	FT	SY	FT	CY	CY	CY	СҮ	СҮ	GAL	CY	CY	
JRIV	DR-1	22+78	LT	СОММ	2.5	17.5	14.0	20.0	20.0				17			12	3	3	4	11
I UN I	DR-2	24+12	LT	СОММ		12.0	23.0	12.0	12.0				11			9	2	2	3	11
N AI	DR-3	25+34	LT	СОММ	2.5	17.5	27.0	20.0	20.0				15			18	5	4	5	11
TIO	DR-4	41+59	RT	СОММ		12.8	11.1	10.0	10.0	21	11		5			5				14
SEC	DR-5	43+81	RT	СОММ		15.0	20.0	15.0	15.0				12			10				15
TER	DR-6	45+15	LT	СОММ	13.0	18.0	24.7	20.0	45.0				38			30				15
Z	DR-7	45+73	RT	СОММ	27.0	18.0	20.0	45.0	20.0				50			38				15
	DR-8	47+96	RT	СОММ	8.3	18.0	21.0	25.0	25.0	38	21		20			21	5	5	6	16
	MCCARTY LANE													17	26		9	8	10	37
	JOHN WOLLUM DRIVE	46+36.35								187	24		47	19	28		9	8	11	37
	VETERANS DRIVE									65				17	26		9	8	10	38

					SHE	ET NO.		17	18	1	9 20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	TOTAL		
203		EX	CAVATIO	N		СҮ		291	241	6	56 329	265	197	211	87	20	113	0	0	0	0	3	63	180	230	195	124	3,205		7
40	-					CY sv	10 147	22	42		$7 \qquad 0$	1 / 0)	2	18	50	101	47	283	642	467	461	180	31	22	13	6	2	2,397		PTIO
1 20	4"	ASPHAL	T CONCR	ETE BASE,			10,147					× (4 / 27	<u> </u>	-																ESCRI
30	-		PG64-22				1,128		3,804.99) X 2	4.0 x (4/12)	x (1/27)																	
7 302	<u>.</u>	6" AGO	GREGATE	BASE		CY	1,692		3,804.99	X 2	4.0 x (6 / 12)	x (1/27)	_																
40	1-3/4"	ASPHAL	T CONCR	I ETE SURFACE		GAL	609		3,804.9	99 X	24.0 x (1/9)	X 0.06		-																
411	СО	URSE, TY	′PE 1, PG6	64-22 (448)		СҮ	494	2	3,804.99	x 24	.0 x (1.75/12) x (1/2	7)	_																
	2 INTER	2-1/4" ASP MEDIATE	COURSE	ONCRETE , TYPE 2 (448	3)	CY	635	3	,804.99 >	x 24	0 x (2.25/12	2) x (1/2	7)																	DATE
																REFERENCE	12" CONDUIT, TYPE A	18" CONDUIT, TYPE A			24" CONDUIT, TYPE C	2'x5' CONDUIT, TYPE A, 706.05	CATCH BASIN, NO. 2-3			ROCK CHANNEL PROTECTION, 9 TYPE C WITH FILTER 10	SHEET NO.		ALE: AS NOTED PRIME CIVIL	AWN BY: JKW PROFESSIONAL DESIGN & CONSTRUCTION SERVICES AWN BY: JKW CHILLICOTHE, OH 45601
		İ	1					_									FT	FT	F	T	FT	FT	EACH	С	Y	СҮ			S C	
20	03	301	3	04 4	07	4 ш	41									D-1 D-2		80 50									9 11			
		SE,				RFAC 48)	_E 2 (44									D-3			2	22							11			
_		TE BA	ASE	ASE		TE SU 22 (4	ICRET TYPE							1MAF		D-4 D-5			2	19	71						11, 12			N
MEN	TION	NCRE	ATE B	ATE B	OAT	NCRE PG64	r con RSE,		o.					BSUN		D-6		50			<i>,</i> .						13		RS	NSIC
3ANK	CAVA	T CON PG64	IREG/	IREG/		T CON PE 1,	HAL		ET N					E SU		D-7						56					40		ONE	XTEI
EM	ΕX	HAL	, AGC	AGC		°НАL ⁻ 5Е, ТҮ	" ASF NATE		SHE					INAC		D-8 D-9	52 96										15 16	_	AISSI	E E
		" ASF	6	8		" ASF DURS	2-1/4 ¹ 3MED							DRA		D-10	40										15	_	OMA	REE
		4				1-3/4 C(INTEF																						IV C	S ST
CY	СҮ	СҮ	СҮ	CY G	AL	СҮ	СҮ									CB-1 - B-2							1				11		PR DUN	3ET9
	17			12	3	3	4		11							CB-3							1				11			TIBE
	11 15			9	2	2	3		11							[B-4							1				12		KSO	- AL
	5			5		4	ر		14							1/// 4									22			_	JAC	NER
	12			10					15							1 v v -1 IW-2								0.	33		9 9	_		, GE
	38			30					15						Н									0.	46	4	12			
	50 20			38	5	5	6		15						Н	W-4								0.	33		13			
	20					ر									H	IW-5								0.	33		13			
		17	26		9	8	10		37							VV-6								0.	21		15			SUB
	47	19	28		9	8	11		37							W-8								0.	∠ı 21		10		SUN	MMARY
		17	26		9	8	10		38						Н	W-9								0.	21		15	—	SH	EET NO.

23	24	25	26	27	28	29	30	31	32	33	34	35	36	TOTAL				
211	87	20	113	0	0	о	0	3	63	180	230	195	124	3,205				025
18	50 ·	101	47	283	642	467	461	180	31	22	13	6	2	2,397			TION	-31-20
																	CRIP ⁻	0 J
																	DES	
																		ATE:
																		JE D/
																		ISSU
																	щ	NAL
																	DAT	RIGI
																	V. BY	
																	RE	
																		C
																'ICES		il.con
																N SERV		gma
															2		- 604	etz@
																N STRL	798 04	vil.jv
															L	& CO	BOX	meciv
															5	ESIGN	P.O.	pri
		Γ				611				60	22	601						8
																ESSIO		3-161
								5.05				ON,				PROF		40-25
			PE A	PEA			PE C	A, 70(). 2-3			'ECTI TER						
	Щ		Г, ТҮ!	г, ТҮІ		1, 1	т, тҮ	YPE /	v, NC		DCEI	PROT 4 FIL ⁻			ED	\searrow	\searrow	\searrow
	RENG		lindi	IDUL			INDN	лт, т	3ASIN			NEL I WITI	et NC		NOT			
	REFE		CON	CON			CON	NDL	TCH E			HAN PE C	SHE		AS			
			12	18'		10	24	(5 ¹ CC	CA		3	D X CK C				ö	3Y:	BY:
								2'>				RC			نن ا	GNEI	WN E	CKED
		-	FT	FT	F	T	FT	FT	EACH	I C	Y	СҮ			SCAI	DESI	DRA	CHE
	D-1			80									9					
	D-2			50									11					
λRΥ	D-3				2	22 19							11 11, 12					
MMA	D-5						71						12				NO	•
JBSU	D-6			50									13			ERS	NSI	оніс
GE SI	D-7		52					56					40			NOI	XTE	NTY,
AINA	D-0		 96										16			MISS	ΕTΕ	COU
DR/	D-10)	40										15			MO	[RE]	SON
															SOJE	TI TY 0	S S	JACK
	CB-1	2							1				11			OUN	BET	ON,
	CB-3	3							1				11			ON C	TIB	ACKS
	CB-4	ł							1				12			CKSC	AL	OF J
	HW-	1								0.	33		9			ΡĹ	NEF	CITY
	HW-2	2								0.	33		9				В	
	HW-3	3								0.4	46	4	12					
	HW-2	4								0.	33		13					
	HW-6	5								0.	رر 21		رن 15	_				
	HW-7	7								0.	21		16			SUM	JB MAR	Y
	HW-8	8								0.	21		15			SHEF	T NO.	
	HW-9	9								0.	21		15			/	ЛГ	-

PROJECT DATA			
RIGHT-OF-WAY)	5.28 AC	RUNOFF COEFFICIENT FOR PRE-CONSTRUCTION SITE	0.381
H DISTURBED AREA	3.56 AC	RUNOFF COEFFICIENT FOR POST-CONSTRUCTION SITE	0.553
INTRACTOR DISTURBED AREA	0.25 AC	IMMEDIATE RECEIVING WATERS	SALT LICK CREEK
ENT EARTH DISTURBED AREA	3.81 AC	SUBSEQUENT RECEIVING WATERS	SALT CREEK
PAVED) AREA FOR PRE-CONSTRUCTION SITE	0.19 AC		
PAVED) AREA FOR POST-CONSTRUCTION SITE	2.23 AC		

659.74		659.60		659.46	659.32		659.18	659.04		658.90	
			-0.35 %								
660.1		660.0		659.4	659.2		659.2	659.0		659.3	
	12+	00			13+	00			14+	00	

0.0 0.0 0 =	0 ELEV. 65 1000'	7.92								
658.35		658.37	658.40		658.46	658.53	658.63		658.76	
	<u>}</u>					 	 = EX.	 GRADE		
658.8		659.0	658.4		658.8	658.9	658.8		658.9	
17+	00			18-	00		19-	00		

FOR ESTIMATED QUANTITIES, SEE SHEET(S) FOR DRIVEWAY DETAILS, SEE SHEET(S) FOR STORM SEWER PROFILES, SEE SHEET(S)

7 38 39

										500.0	o' V.C.		
										PVI STA. 24+00.0 SSD =	0 ELEV. 660.37 1136'		
670 —	659.18	659.32	659.46	21+50.00		659.70	659.79	659.85	659.89	659.90	659.89	659.86	
660 —	0.35 %			PVC STA. 2						 <u>/</u>			
655 —		EX. GRADE			Q								
					18	" CONDUIT, TYPE A							
650 —													
645 —	659.1	659.4	659.6	659.6		659.6	659.6	659.6	659.5	659.2	659.0	659.1	
		21+00			22+	00		23+	00	24+	-00		

658.85		658.69	658.53		658.37	658.21	658.05		657.89	
				-0.40%						
			 	-0.40 ‰ 				EX. GF	ADE	
								/		
657.7		657.7	658.1		658.0	657.7	657.3		656.5	
	28+	00			29+00			30-	-00	
	1						 		1	<u> </u>

656.61		656.45		656.29	656.13	655.97		655.81	
— — <u>-</u>					 				
<u>DUIT, TYPE</u>	A					EA. GRADE			
654.0		653.5		653.0	652.7	652.8		652.8	
			34-	-00		35-	-00		

670													
870	655.17	655.01	654.85	654.69	654.53	654.37			654.10	654.05	654.05		654.11
665							00						
660							[A. 39+25						
655			-0.40 %				BVC S ⁻						
			 			 						=	 (. GRADE
050													
645									~				
	652.3	652.5	652.(652.8	652.7	653.0		2.7 Co	652.8	652.9	652.6		653.
	37+	-00	38	-00		39-	-00		40	-00			41+

FOR ESTIMATED QUANTITIES, SEE SHEET(S) FOR INTERSECTION DETAILS, SEE SHEET(S) FOR DRIVEWAY DETAILS, SEE SHEET(S)

7 37 38 450.00' V.C. PVI STA. 46+35.00 ELEV. 659.19

											001
										550 = 100	50
		1	 6			9	 2		2		
		556.6	557.0	557.5 ⁻		58.0	558.5		59.0		
	0)			•		
	+10.0										
	IA. 44										
	VC S ⁻						 				
%	٦.										
		<u>}</u>									
			EX. GRADE								
		656.0	656.9	657.7		658.4	658.8		659.0		
44-	+00			45+	-00			46-	-00		
											1

FOR ESTIMATED QUANTITIES, SEE SHEET(S) FOR DRIVEWAY DETAILS, SEE SHEET(S) FOR INTERSECTION DETAIL, SEE SHEET(S)

38

				l			•
	661.56		PVT STA. 48+60.00	1.28 %	PVI STA. 148+86.99	PVI ELEV. 662.41	665
EX. GRADE			(660
		12" CC	NDUIT, TYP	EA			
							655
							650
	661.6		662.1				645
48-	-00					49-	-00

	REV. BY DATE DESCRIPTION	ORIGINAL ISSUE DATE: 01-31-2025
PRIME CIVIL	PROFESSIONAL DESIGN & CONSTRUCTION SERVICES P.O. BOX 798 CHILLICOTHE OH 2664	740-253-1618 primecivil.jwetz@gmail.com
AS NOTED	лкw ЛКW	JKW
SCALE: DESIGNED:	DRAWN BY:	CHECKED BY:
PROJECT	GENERAL IIBBEIS SIREEI EXIENSION	CITY OF JACKSON, JACKSON COUNTY, OHIO
PF	PLAN & ROFILE	
^o 10 20 30 16	/ 4	5

					END	AREA	VOL	UME	
						FILL	32.2	9.1	
							2.2	9.1	
661				661					
660				660					
659 /			N	659					661
658 /		\backslash		658					660
657				657		19.7			659
656				656					658
	STA 1	0+25							657
		0+2)							
							13.5	4.7	
661				661					661
				660					660
659				659					659
658				658	34.6	0.0			658
657				657					657
	STA.10	+12.21							
							7.8	0.0	
661				661					661
660	- $ +$			660					660
659				659					659
658				658	0.0	0.0			658
657	STA.10	0+00		657					657
					—				
60 40	20 0	2	20 2	40 60			כי	14	60

					END /			UME FILL				
							35.3	1.4				
												025
											NOI	31-2(
											RIPT	01-
											ESCI	
												ii
				662								DATE
				661								UE I
												- ISS
				660							Щ	NAL
				659							DAT	RIG
				658								0
											.BY	
				657	37.7	1.6					REV	
					57.7							
STA.11+7	75									S		ш
										ZVICE		ail.co
										N SEI	-	<u> </u>
											1560	etz(
										NSTR	798 OH 4	vil.jw
									ш	& CO	BOX THE.	neci
							36.0	15	5		P.O.	prir
							0.0			IAL DI	HIL	
									n n	SSION	Ŭ	-1618
										ROFE:		-253
				662						₽.		740
				661						_		_
				660					OTEC	JKM	JKW	JKM
			_						AS N			
				659	40.2	1.7						
				658						ü	BΥ:	DΒY
				657					VLE:	IDNI	NWF	CKE
STA.11+5	50								SCA	DES	DR/	E
										Z		
										SIC	(o
										Б П	(OHI
								,		X	ĺ	×,
							36.8	1.6			:	
									.	ZEE ZEE		
									JECI	STF		-KSC
									PRO	л С)A(
				661						ΒE	(SON CON
л				660							(
												/L - 1(
				659						ER/	Í)
	7			658							i	
				657	39.4	1.8				B		
STA.11+2	25											
										CRC SECTI	oss ONS	
										SHEET	NO.	
Φ	2	0 д	о б	0			108	5	1	7 /	4	5
ĭ	2	4	5				-	,		<i>•</i>		-

						END	AREA	VOL	UME	
							FILL	CUT	FILL	
								26.1	3.6	
661					661					
660					660					
650					650					660
					059					000
658					658					659
657					657	31.7	1.3			658
		ста								657
		SIA.	12+50							656
								32.6	1.3	
660			<u> </u>		660					661
659					659					660
658					658					650
										039
657					657					658
656					656	38.7	1.6			657
		STA.	12+25							
								35.7	1.4	
660					660					660
659) `\			<u> </u>	659					659
658	\ \	V' [658					658
657					657	- 9 -				657
656					656	30.5	1.4			656
		STA.	2+00							
60 4	0 2	0	φ 2	20 2	10 60	·	· ·	94	6	60

					END /	AREA FILL	VOL CUT	UME FILL				
							29.7	6.5				25
											TION	1-31-20
											ESCRIF	Ó
												ш
												JE DA
				660								ISSI T
				659							DATE	IGINA
				658								OR
				657							EV. BY	
				656	28.9	6.6					R	
STA.1	4+00									CES		com
												gmail.
									\geq	RUCTION	45601	vetz@
										CONSTF	JX 798 Е. ОН	ecivil.jv
									K	SIGN &	P.O. B(ICOTH	prime
							25.8	5.2		DNAL DI	CHILL	18
									D	OFESSIO		-253-16
				661						PR		740
				660					ED	XX	XX	X
				659					LON SA			
				658								÷
				657	26.8	4.5			ц Ш	GNED:	WN ΒΥ	CKED B
STA.	13+75								SCAL	DESI	DRA	CHEC
										Z		
										NSIC	(9
										XTEN		ד, כ
										ETE	(OUN
									5	LREE	(SON
							24.2	4.9	ROJE	-S S		JACK
				660						3BE1	(SUN,
<u> </u>				659						Ξ		
				658						ERAI		1 ∑
				657	25.4	6.0				ENI	,	
• ۲۲۵	3+50			656		-				U		
<i>ب</i> ۲ <i>۲</i> ۸۰۱												
										CRC SECTI	ons	
			10 -	0			80	1.7	1	sheet 8	г NO. Д Г	
(ν 2	<u>20</u> 2	10 G	0			00	·/		- 1	Τ.	/

							VOL			
							44.0	1.5		
661					661				661	
660					660				660	
659		/	<u> </u>		659				659	
658					658				658	
657		V/			657	42.6 3.2			657	
656					656				656	
		STA.1	14+50							
							36.0	4.9		
661					661					
660					660				661	
659					659				660	
658		Æ		. /	658				659	
657					657				658	
656					656				657	
						35.2 7.5			656	
		STA.	14+25							
									661	
									660	
									659	
									658	
									657	
									656	
6	0 40 2	0	o 2	20 40	60		80	6	6	0

				FILL		FILL				
STA.16+00		661 660 659 658 657 656	95.7	0.0	83.8	0.0			REV. BY DATE DESCRIPTION	ORIGINAL ISSUE DATE: 01-31-2025
		662 661 660 659 658 657			103.7	0.0	PRIMF CIVII	<pre>/ Professional design & construction services</pre>	CHILLICOTHE. OH 45601	/ 740-253-1618 primecivil.jwetz@gmail.com
STA.15+75		656	128.3	0.0			SCALE: AS NOTED	DESIGNED: JKW	DRAWN BY: JKW	CHECKED BY: JKW
STA.15+50		661 660 659 658 657 656	129.4	0.0	119.3	0.0	PROJECT	GENERAL TIBBETS STREET EXTENSION		CITY OF JACKSON, JACKSON COUNTY, OHIO
								CRC)SS	
								SECTI		
o 20	40 6	50			307	1	1	9/	45	5
				1			1			I

		END AREAVOLUMECUTFILLCUTFILL43.10.0		END AREA VOLUME CUT FILL CUT FILL Image: Second s	END AREA VOLUME CUT FILL CUT FILL 40.5 50.1 50.1
661 660 659 658 657 656		49.0 0.0		661 660 659 658 657 656 STA.17+75	661 660 659 658 657 656 656 656 656 656 656 657 657 657
	STA.16+75		661 661		and primecivili, jwetz@gmail.com
661 660 659 658 657 656		57.6 0.0	660 660 659 659 658 658 657 657 656 656 655 655 STA.17+25 650	46.8 0.0 661 660 659 658 657 657 656 5TA.17+50	661 660 659 658 657 656 48.1 0.0 656 48.1 0.0 656 48.1 0.0 656 657 48.1 0.0 656 657 657 657 657 657 656 658 658 657 657 657 657 657 657 657 657
		66.2 0.0			
661 660 659 658 657 656	1 661 660 659 658 7 657 656 5 STA.16+25	85.3 0.0	661 661 660 660 659 659 658 658 657 656 656 656 STA.17+00 1	44.2 0.0 44.2 0.0	661 660 659 658 657 656 47.3 0.0 47.3 0.0
6		· · 159 0		· · · 68 0 60 40 20 0 20	40 60 · 102 0 CROSS SECTIONS SHEET NO. 20/45

		CUT FIL	A VOLUME CUT FILL 42.8 0.0			END AREA VOLUME CUT FILL CUT FILL CUT FILL 6.7 0.0		END CUT	AREA VOLUM FILL CUT FII 29.4 0	
661 660 659 658 657 656	STA.18+50	661 660 659 658 657 656 656		661 660 659 658 657 656 STA	.19+25	36.8 0.0	663 662 661 660 659 658 657 656 STA.19+50	663 662 661 660 659 658 657 656 33.5	0.2	REV. BY DATE DESCRIPTION ORIGINAL ISSUE DATE: 01-31-202
662 661 660 659 658 657 656	STA.18+25		44.3 0.0	662 661 660 659 658 657 656 STA.		39.3 0.0			25.8 0	CALE: AS NOTED PRIME CIVIL SCALE: AS NOTED PROFESIONAL DESIGN & CONSTRUCTION SERVICES DESIGNED: JKW PROFESSIONAL DESIGN & CONSTRUCTION SERVICES DRAWN BY: JKW P.O. BOX 798 CHECKED BY: JKW 740-253-1618
662 661 660 659 658 657 656	STA.18+00	662 661 660 659 658 657 656 42.4 0.0	41.6 0.0	662 661 660 659 658 657 656 STA	662 661 660 659 658 658 657 655 .18+75 .18+75	44.2 0.0	663	663 662 661 660 659 658 658 657 36.1	0.0	CITY OF JACKSON, JACKSON COUNTY, OHIO

	END AREA VOLUME CUT FILL CUT FILL		END AREAVOLUMECUTFILLCUTCUTFILL		END AREA VOLUME CUT FILL CUT FILL
661 661 660 660 659 659 658 657 656 5TA.20+00	25.2 0.6 22.1 0.8 662 661 660 659 658 657	662 661 660 659 658 658 657 STA.20+75	32.9 0.0		OBGINAL ISSUE DATE: 01-31-2025
		663 663 662 661 660 659 658 657 STA.20+50 5TA.20+50	27.6 0.1	662 661 660 659 658 657 STA.21+25	0.0 36.2 660 660 661 660 662 661 663 900 664 660 665 900 665 900 665 900 665 900 665 900 665 900 665 900 665 900 665 900 665 900 9000 900 9000 900
661 661 661 661 660 660 659 659 658 657 656 656 57 656 57 656 57A.19+75 656	30. 0.5 30. 0.5	662 661 660 659 658 657 STA.20+25 STA.20+25	23.3 0.6	662 661 660 659 658 657 5TA.21+00	Image: state of the state
60 40 20 0 20 40 60	· · 48 1 60 4	40 20 0 20 40 60	· · 83 1	60 40 20 0 20 40	60 · · 66 0 SHEET NO. 22/45

				END AREA CUT FILL	VOLUMECUTFILL26.00.1				END AREA VOLUME CUT FILL CUT FILL 22.1 1.7 1.7					END AR CUT F	EA VOLU ILL CUT 14.0	ME FILL 3.6	RIPTION 01-31-2025
662 661 660 659 658 657		STA.22+00	662 661 660 659 658 657	0.9 10.6	28.4 0.0	662 661 660 659 658 657 657	STA.22	2+75 2+75	24.3 1.5	661 660 659 658 657	STA.23+50		661 660 659 658 657	15.7 3	3.2		IVIL Description UCTION SERVICES REV. BY 15601 REV. BY A5601 REV. BY Actz@gmail.com ORIGINAL ISSUE DATE:
662 661 660 659 658 657		STA.21+75	662 661 660 659 658 657	32.2 0.0		662 661 660 659 658 657	STA.22	Image:	25.6 0.8	661 660 659 658 657	STA.23+25		661 660 659 658 657	21.2	3.1	2.9	SCALE:AS NOTEDPRIMEDESIGNED:JKWPROFESSIONAL DESIGN & CONSTRDESIGNED:JKWDRAWN BY:JKWCHECKED BY:JKWCHECKED BY:JKW740-253-1618primecivil.jm
663 662 661 660 659 658 657		STA.21+50	663 662 661 660 659 658 658 657	35.1 0.0	31.2 0.0		STA.22		27.1 0.2	662 661 660 659 658 657	STA.23+00		662 661 660 659 658 657	23.4	20.6	2.4	CITY OF JACKSON, JACKSON COUNTY, OHIO
60 4	0 20	0 20 40	60		60 0	60 40 20	0	20 40 60	· · 99 9	60	40 20 0 20	40	60		· 5 ²	9	SHEET NO. 23 / 45

								A VO			
								8.3	5.8		
										662	
										661	
664						664				660	
661						661				660	
660						660				659	
659						659				658	
658						658				657	
657						657	8.5 6.	2		656	
656		<u>стл</u> -	4.75			656					
		51A.2	24+25								
								9.4	5.3		
										662	
662						662				661	
661						661				660	
660						660				659	
650						650				658	
659				_		059	11.9 5.	4		050	
658						050				65/	
657		STA.2	24+00			657				656	
								12.3	4.6		
661						661				661	
660						660				660	
659						659				659	
658						658				658	
657				<u> </u>		657				617	
656						656	14.6 4.	5		6-6	
050		STA.:	23+75			020				656	
60	40 2	0	þ 2	0 4	40 6	50		30	16	6	0

				661 660 659 658	END A CUT	AREA FILL 4.7	VOL CUT 10.7	UME FILL 4.5			V. BY DATE DESCRIPTION	ORIGINAL ISSUE DATE: 01-31-2025
STA.2	25+75			657			9.8	5.4	PRIMF CIVII	PROFESSIONAL DESIGN & CONSTRUCTION SERVICES	P.O. BOX 798 CHILLICOTHE. OH 45601	740-253-1618 primecivil.jwetz@gmail.com
STA.2	25+50			660 659 658 657 656	9.0	7.0			SCALE: AS NOTED	DESIGNED: JKW	DRAWN BY: JKW	CHECKED BY: JKW
				661 660			7.6	6.8	PROJECT	BBETS STREET EXTENSION		CKSON, JACKSON COUNTY, UHIO
STA.2	25+25			659 658 657 656	7.4	7.7					DSS ONS	
(þ 2	0 4	o 6	0			28	17	2	4 /	4)

						END A	AREA	VOL	UME		
						CUT	FILL	CUT	FILL		
								0.0	13.4		
661					661						
660					660						
659					659					660	
6 - 8					6 - 9					(50	
050			\backslash		050					059	
657					657					658	
656					656					657	
_					-	0.0	14.8				
655					655					656	
		STA.26+50								655	
										6-1	
										054	
								2.7	10.9		
								/			
661					661						
660					660						
659					659					660	
6-0					6-0						
658					658					659	
657					657					658	
656					656					657	
					0,0	5.8	8.7			037	
655					655					656	
		STA.26+25								655	
								7.8	6.3		
661					661						
660					660					660	
659					659					659	
					(-0)						
658					050					658	
657					657					657	
6=6					656					656	
					ر <i>د</i>	11.1	4.9			020	
655					655					655	
		STA.26+00									
			20	10	0			11	21		
00	40 20	Ψ	20 4		\sim	1		11	י כ		

Image: State 2775						END	AREA	VOL	UME				
659 659 655 10 77 74 77 74 77 74 77 74 77 74 77 74 77 74 77 74 77 74 77 74 77 74 77 74						CUT	FILL	CUT	FILL				
659 659 659 657 656 655 657 656 655 657 656 655 657 656 657 656 657 656 655 657 656 655 657 656 655 657 656 657 656 657 656 657 656 657 656 657 656 656 657 656 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>6.0</td> <td>6.2</td> <td></td> <td></td> <td></td> <td>5</td>								6.0	6.2				5
0 0												NO	31-202
659 659 653 657 655 654 654 555 654 555 654 555 654 555 654 555 655 54 656 555 657 556 658 557 654 553 654 54 57A.227+75 654 659 657 656 553 657 654 657 554 657 654 657 654 657 654 657 654 657 655 657 654 657 655 657 656 657 656 657 656 657 656 657 654 657 654 657 654 657 654 657 554 657												RIPTI	01-1
659 653 653 654 654 53 53 53 54 53 55 654												DESC	
659 659 577 556 655 557 554 57A.38+00 554 57 656 555 59 657 554 659 655 655 56 655 56 656 555 657 554 656 555 57A.27+75 654 655 56 656 555 656 555 657 554 656 555 57A.27+75 554 57A.27+75 554 57A.27+75 554 57A.27+75 554 655 655 655 553 57A.27+75 554 57A.27+750 555 57A.27+750 553 655 654 574 532 575 554 574 532 575 554 576 555 577 557 <tr< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>VTE:</td></tr<>													VTE:
6599 658 33 77 79 Полинания 657 654 33 77 14 Полинания Полинания 657 654 33 77 14 14 14 14 659 654 15 54 15 54 15 14					6-1								JE DA
658 657 655 654 655 654 657 654 658 54 659 659 656 657 657 654 659 658 657 654 659 654 657 654 659 654 659 654 659 654 659 654 659 654 659 654 659 654 659 654 657 654 657 654 657 655 657 654 657 654 657 654 657 654 657 654 657 654 657 654 657 654 657 654 657 654 657 654 654 9 25 654 </td <td></td> <td></td> <td></td> <td></td> <td>659</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>ISSL</td>					659								ISSL
657 657 655 653 654 54 655 55 656 55 657 656 657 54 657 54 657 54 656 55 657 54 656 55 657 656 657 656 657 656 657 656 657 656 657 656 657 656 657 656 657 656 657 656 657 657 656 657 657 654 657 654 657 654 657 654 657 655 656 657 654 657 654 657 654 9 57/45 9					658							ШL	INAL
6556 5-9 7-7 7-9 7-9 5TA.28+00 653 5-9 7-9 7-9 7-9 659 659 656 5-5 7-9 7-9 7-9 659 656 657 656 5-4 7-9 7-9 7-9 659 656 657 656 6-57 6-56 6-57 6-56 6-57 6-56 6-57 6-56 6-57 6-56 6-57 6-56 6-57 6-56 5-9 6-57 6-56 5-9 6-57 6-56 5-9			[657							DA	ORIC
655 50 77 <t< td=""><td></td><td></td><td></td><td></td><td>656</td><td></td><td></td><td></td><td></td><td></td><td></td><td>37</td><td></td></t<>					656							37	
654 33 77 4 79 STA.28+00 659 50 79 26 79 659 659 657 656 94 79 104 659 655 56 94 79 104 100 N BUT OF 10					655							REV. F	
STA.28+00					654	3.9	7.7						
0 0	STA.2	8+00									ES		mo
659 565 56 56 56 56 655 655 56 56 57 57 656 655 654 56 57 57 5TA.27+75 654 56 10 132 10 657 655 655 654 10 132 10 5TA.27+75 654 554 56 132 10 100 657 655 655 654 132 100 100 5TA.27+75 654 60 132 100 100 100 5TA.27+75 654 60 132 100 100 100 655 655 654 10 132 100 100 5TA.27+50 60 193 100 100 100 100										_	SERVIC		mail.c
659 55 659 658 655 655 655 654 5TA.27+75 654 655 654 655 655 655 656 657 656 655 654 655 654 655 654 655 654 655 654 655 654 655 654 655 654 655 654 654 1.6 9.4 9.4 9.5 1.6 9.6 1.6 657 656 657 656 657 656 654 1.5 9.0 1.5 9.0 1.5 9.0 1.5 654 1.5 655 6.5 654 1.5 9.10 1.5 9.10 1.5 9.10 1.5 1.5												601	tz@g
659 5.6 7.9 7.9 9.4 659 658 657 656 9.4 9.4 9.4 659 655 655 654 9.4 9.4 9.4 9.4 5TA.27+75 654 0.0 1.6 9.4 9.4 9.4 9.4 659 655 657 656 6.5 0.0 1.32 9.4 651 659 655 657 656 6.5 6.0 1.32 9.4 651 655 654 0.0 1.32 9.4 9.4 9.4 9.4 9.4 651 655 655 654 0.0 132 9.4										し	ISTRUC	798 DH 45	il.jwe
659 658 657 656 656 655 657 654 658 657 654 0.7 1.6 94 94 94 95 94 95 94 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>L</td> <td>& CON</td> <td>BOX 7</td> <td>neciv</td>										L	& CON	BOX 7	neciv
659 658 657 656 655 5TA.27+75 5TA.27+50 0 20 25 / 45								2.6	7.0	\leq	DESIGN	P.O.	prii
659 658 657 656 655 1.6 9.4 655 655 655 654 657 654 657 654 657 654 657 654 657 654 657 655 658 657 659 656 656 657 656 656 657 656 656 657 656 656 657 656 656 657 656 654 657 656 656 657 656 654 577 Loc/7+50 9 0 73.2 0 73.2 0 73.2 0 73.2 0 73.2 0 73.2 0 73.2 0 73.2 0 73.2 0 74.5 0 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>2.0</td> <td>7.9</td> <td></td> <td></td> <td>CHIL</td> <td>18</td>								2.0	7.9			CHIL	18
659 659 658 657 656 655 655 654 5TA.27+75 654 659 659 656 659 656 659 657 654 658 659 656 655 657 656 656 657 656 657 656 655 656 655 656 654 57A.27+50 654 57A.27+50 654 9 25 9 25 9 25 40 69 9 25										D	DFESSIO		253-16
658 657 655 5TA.27+75 5TA.27+75 5TA.27+50 5TA.27+50 654 5TA.27+50 654 655 655 654 5TA.27+50 5TA.27+50 654 655 655 654 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7					659						PRO		740-2
657 656 655 5TA.27+75 654 654 655 654 655 655 655 655 655 65					658						_	_	
656 1.6 9.4 9.4 9.4 9.4 STA.27+75 654 1.6 9.4 0.7 10.4 9.7 STA.27+75 659 659 657 656 0.7 10.4 9.7 10.4 STA.27+50 655 657 656 0.0 13.2 13.2 13.2 10.4 13.2 STA.27+50 69 69 9 25 45 5 5 5 0.0 13.2 9 25 45 5					657					IOTEL	JKW	JKW	ЛКМ
655 1.6 9.4					656					AS N			
STA.27+75 654 654 - 654 - 0.7 10.4 <					655	1.6	9.4				••		BY:
STA.27+75 STA.27+75 STA.27+50										щ	GNED	NN B	CKED
659 658 657 655 654 STA.27+50 0 20 40 60 13.2 0.0 13.2 0.	STA.2	7+75			654					SCAL	DESIG	DRA	CHEC
659 658 657 656 655 5TA.27+50 0 20 40 60 132 0 3 132 0 4 9 25 CROSS SECTIONS SHEET NO. 25 / 45													
0.7 10.4 659 657 657 657 656 657 656 657 656 657 656 657 654 5TA.27+50 0.0 13.2 0.0 13.2 0.0 13.2 0.0 13.2 0.0 13.2 0.0 13.2 0.0 13.2 0.0 13.2 0.0 13.2 0.0 13.2 0.0 0.0 13.2 0.0 13.2 0.0 13.2 0.0 0.0 13.2 0.0 13.2 0.0 13.2 0.0 13.2 0.0													
659 658 657 656 5TA.27+50 0 20 40 60 0 13.2 0 0 0 13.2 0 0 0 0 13.2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0											NON		
659 658 657 656 5TA.27+50 0.0 13.2 0.0											NSI	(OHIO
659 658 657 656 655 5TA.27+50 0.0 5TA.27+50 0.0 0.0 13.2 13.2 13.2 13.2 13.2 13.2 13.2 13.2											XTE	ĺ), (
659 658 657 656 655 654 STA.27+50 0.0 13.2 STA.27+50 0.0 13.2 654 STA.27+50 0.0 13.2 654 STA.27+50 0.0 13.2 0.0 13.2 CROSS SECTIONS SHEET NO. 25 / 45								0.7	10.4		Ē		
659 658 657 656 656 57A.27+50 5TA.27+50 0.0 13.2 654 5TA.27+50 0.0 13.2 654 5.0 13.2 654 5.0 13.2 654 5.0 13.2 654 5.0 13.2 6.0 13.2 7.0 14.5 7.0 14.5 7.5 7.5 7.5 7.											3EE		
659 658 657 656 655 655 654 STA.27+50 0.0 13.2 654 5TA.27+50 0.0 13.2 654 5TA.27+50 0.0 13.2 14.5 1					650					DJEC	STI		VCKS
657 656 655 5TA.27+50 654 5TA.27+50 666 665 654 654 654 654 654 655 654 655 654 654					009					PR(ETS	-	11, J7
657 656 655 5TA.27+50 5TA.27+50 654 5TA.27+50 654 655 654 655 654 655 654 655 654 9 25 40 60 60 9 25 25 45					658						BB		
656 655 655 655 654 0.0 5TA.27+50 654 9 20 40 60 1 9 20 40 60 1 9 25					657						Ξ	-	1 JA(
655 0.0 13.2 Image: state of the					656						ERA	(I	0 / 11
STA.27+50 654 0.0 13.2 Image: Constraint of the second seco					655						ENE	Ū	ا ر
STA.27+50 CROSS SECTIONS 0 20 40 60 · 9 25 25 / 45					654	0.0	13.2				U		
0 20 40 60 . . 9 25 CROSS SECTIONS	STA.2	7+50											
0 20 40 60 · · 9 25 25 / 45											CRC	SS ONS	
0 20 40 60 · · · 9 25 25 25/45											SHEET	[NO.	
	φ	2	20 4	0	60			9	25	2	5 /	45	5

	END AREA VOLUME CUT FILL CUT FIL 20.4 1.4	E LL 4	END AREA VOLUME CUT FILL CUT FILL 13.3 4.4 1100000000000000000000000000000000000	END AREA VOLUME CUT FILL CUT FILL 0.5 13.8 Image: State of the
660 66 659 65 658 65 657 65 656 65 655 65 654 65 653 STA.28+75	o	659 65 658 65 657 65 656 65 655 65 654 65 653 STA.29+50	9 8 7 6 6 5 4 3 16.7 4.0 16.7 4.0 16.7 4.0 16.7 4.0 16.7 4.0 16.7 4.0 16.7 4.0 16.7 4.0 16.7 4.0 16.7 5 16.7 5 17 17 17 17 17 17 17 17 17 17 17 17 17	658 657 656 655 655 655 653 0.9 12.2 12.2
660 66 659 65 658 65 657 65 656 65 655 65 656 65 657 65 656 65 657 65 658 65 657 65 658 65 659 65 656 65 657 65 658 65 659 65 651 65 652 65 653 STA.28+50	0 18.3 2.4 9 18.3 2.4 9 18.3 2.4 6 16.9 2.9 4 16.9 2.9 4 16.9 2.9	o 659 658 657 657 655 656 655 655 655 655	9 8 7 6 5 4 3 20.3 3.1 20.3 3.1 17.1 3.3 17.1 3.3 17.1 3.3 659 658 655 656 655 656 655 655 656 655 656 655 655 655 655 656 655 65 6	3.1 3.1 3.1 3
659 658 657 656 655 655 655 655 654 5TA.28+25	12.1 4.1 9 8 7 6 5 9.1 5.7 4	0 6 6 6 6 6 6 6 6 6 6 6 6 6	0 19.4 2.2 9 19.4 2.2 6 659 7 658 6 655 4 21.6 1.6 21.6 1.6 21.6 1.6 5 654 653 5TA.29+75	Image: state of the state
60 40 20 0 20 40 60	· · · 51 7		· · <td>CROSS SECTIONS SHEET NO. 26/45</td>	CROSS SECTIONS SHEET NO. 26/45

							END	AREA	VOL	UME		
								FILL	0.0	71LL 30.4		
											658	
658						658					657	
657						657					656	
656					_	656					655	
655						655					654	
654						654					652	
652						652						
0))						0))	0.0	30.4				
		STA.	31+00				-					
									0.0	24.8		
							-				658	
											657	
658						658	-				656	
657						657					655	
656						656					654	
655						655	0.1	23.2			653	
654						654	-					
653		STA.	30+75			653						
							-					
							-		0.0	15.4		
											658	
658						658					657	
657						657					656	
656					-	656					655	
655						655	-				654	
654						654	0.2	17.5			653	
653		СТА	20+50			653						
			עריע									
							-					
6	0 2	0 20	¢ 2	20 2	o 6	50	.		0	71	6	50

				END /	AREA	VOL CUT 0.0	UME FILL 46.5				025
										SCRIPTION	01-31-20
			659 658							DE	DATE:
			657 656								NL ISSUE
			655	0.0	43.9					DATE	ORIGINA
STA.32+50			654							REV. BY	
									ERVICES		mail.com
									INSTRUCTION S	(798 OH 45601	vil.jwetz@g
			658			0.0	36.0	MF	L DESIGN & CO	P.O. BOX II LICOTHE.	primeci
			657					PR	DFESSIONA	9	253-1618
			656						PRO		740-2
			655 654					DTED	JKW	JKW	JKW
			653	0.0	33.8			AS N(3Ү:
STA.32+25								SCALE:	DESIGNED:	DRAWN BY	CHECKED E
									N		
									XTENSIC	(ГУ, ОНІО
						0.0	30.7		EET E>	(
			658 657					OJECT	S STR		ACKSU
			656					PR	BETS	-	SON, J
			655						TIB		JACK
			654						ERAL		TY OF
			653	0.0	32.6				GENE	i	
STA.32+00											
									CRC SECTI	ONS	
φ 2	20 4	o 6	0			0	113	2	7/	4	5

		END AREA VOLUME CUT FILL CUT FILL CUT FILL		END AREA VOLUME CUT FILL CUT FILL	END AREA VOLUME CUT FILL CUT FILL O.0 83.6
657 656 655 654 653 652 651	657 656 656 655 654 653 652 1 5 5 5 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6	0.0 56.5	659 658 657 656 655 654 653 652 651 650 STA.34+00	659 657 656 657 656 655 655 654 653 651 650 651 650 651 650	657 656 655 654 653 652 651 650 5TA.34+775 5TA.34+775
658 657 656 655 654 653 652	658 657 656 657 656 655 654 653 653 652 5TA.33+00	0.0 75.6	2 656 655 654 653 652 651 STA.33+75	Image: Constraint of the second se	655 655 655 655 655 655 655 655
658 657 656 655 654 653 652	3 658 3 658 4 657 65 655 654 653 652 5TA.32+75	0.0 0.0	2 657 656 655 654 653 652 651 STA.33+50	Image: state of the state	Image: Strady of the strady
	60 40 20 0 20 40 60	· · 0 181	1 60 40 20 0	20 40 60 · · 0 211 60 40 20	0 20 40 60 · · 0 250 28/45

			END AREA CUT FILL	VOLUME CUT FILL			END AREA VOLUME CUT FILL CUT			END AREA VOLUME CUT FILL CUT FILL
65; 654 655 655 655	7 6 5 4 3 2 51	657 656 655 654 653 652 651 5TA.35+50 5TA.35+50	0.0 86.4	0.0 75.3	656 655 654 653 652 651 650	654 654 654 654 654 654 654 654 654 654		656 655 654 653 652 651 650 STA.36+50	656 655 654 653 651 650	O.O 63.7 DESCRIPTION REV. BY DATE DESCRIPTION REV. BY DATE DESCRIPTION REV. BY DESCRIPTION REV. BY DESCRIPRON REV. BY DESCRIPRON REV. BY DESCRIPRON REV. BY DES
65; 654 654 655 655 655	7 6 5 4 3 2 51 0	657 656 655 654 653 652 651 650 5TA.35+25	0.0 87.6	0.0 80.6	656 655 654 653 652 651	654 654 654 654 654 654 654 654 654 654	0.0 43.1 0.0 75.4	656 655 654 653 652 651 650 STA.36+25	656 655 654 653 652 651 650	0.0 39.6 SCALE: AS NOTED SCALE: AS NOTED BESIGNED: JKW PO. BOX 798 CHILLICOTHE, OH 456 CHILLICOTHE, OH 456
65; 654 654 655 655	7 6 5 4 3 2 51	657 656 655 654 653 652 651 5TA.35+00	0.0 92.5	0.0 83.4	656 655 655 654 653 652 651 650	654 655 654 655 654 653 654 653 654 654 654 654 654 654 654 654 654 654	0.0 26.9			PROJECT PROJECT GENERAL TIBBETS STREET EXTENSION
	60 40	o 20 0 20 40 60		0 239	60 40	20 0 20 40 60	· · 0 125	60 40 20 0	20 40 60	CROSS SECTIONS SHEET NO. 0 103 29/45

		END	AREA	VOL	UME		
			FILL	0.0	83.4		
654	654					654	
653	653					653	
652	652					652	
651	651					651	
650	650					650	
649	649	0.0	94.5				
	STA.37+00						
				0.0	40.0		
654	654						
653	653						
652	652						
651	651						
		0.1	96.21				
650	650						
649	57A.36+88.69						
				0.0	48.8		
					1		
651	6EA					654	
v)4							
653						653	
652	652					652	
651	651					651	
650	650		06 2			650	
		0.0	90.2			649	
	STA.36+75						
							_
6	o 40 20 0 20 40 60			0	172	60	

					END A	AREA FILL	VOL CUT 0.1	UME FILL 43.8			REV. BY DATE DESCRIPTION	ORIGINAL ISSUE DATE: 01-31-2025
				654 653 652 651	0.0	54.4			ED PRIMF CIVII	KW PROFESSIONAL DESIGN & CONSTRUCTION SERVICES	KW P.O. BOX 798 CHILLICOTHE. OH 45601	KW 740-253-1618 primecivil.jwetz@gmail.com
STA.3	38+00			650					SCALE: AS NOT	DESIGNED:	DRAWN BY: JI	CHECKED BY: JI
STA.	37+75			654 653 652 651 650 649 648	0.0	106.8	0.0	74.7	PROJECT	GENERAL TIBBETS STREET EXTENSION		CITY OF JACKSON, JACKSON COUNTY, UHIO
	2	0 4	o 6	0			O	119	3	CRC SECTI SHEET	oss ons ⁻ NO.	5

										ا∩/\		
									FILL		FILL	
										0.0	26.9	
												655
												(
												654
												653
												652
												0)2
												651
												650
							-					
655							655					
654							654					
653							653					
		/					0))					
652		/			\mathcal{I}		652					
651		/					651					
						\						
650							650					
649							649					
649		/					6 4 9					655
640		/					040					055
												654
												653
			STA.3	8+50								
												652
												651
								0.0	32.8			
655							655			0.1	30.2	
651							654					
v)4		,					~JT					
653		/	Ц <u> </u>		\		653					655
652							652					654
							C - 1					
651							o51					653
650							650					652
640							649					651
049		/					~די					
648		1					648					650
								0.2	32.3			
			STA.	38+25								
6	o 4	0 2	0	o 2	2 0 4	o 6	Ö	·		0	86	60

				END	AREA	VOL	UME				
			655 654 653 652 651 650	CUT	FILL 13.6	2.4	FILL 13.8			REV. BY DATE DESCRIPTION	ORIGINAL ISSUE DATE: 01-31-2025
STA.39+75			655 654 653 652 651 650	0.0	17.5	1.0	14.4	SCALE: AS NOTED PRIMF CIVII	DESIGNED: JKW PROFESSIONAL DESIGN & CONSTRUCTION SERVICES	DRAWN BY: JKW P.O. BOX 798 CHILLICOTHE, OH 45601	CHECKED BY: JKW 740-253-1618 primecivil.jwetz@gmail.com
STA.39+50			655 654 653 652 651 650	0.0	15.8	0.0	15.4	D PROJECT	CET EXTENSION		
ψ 2	0 4	+ ⁰ 6	0			2	44		, • 1	- ۲	/

655 654 653 652 651 650 649	STA.40+50	655 654 653 652 651 650 649 649	END AREA VOLUME CUT FILL CUT FILL 0.0 0.0 0.0 1.9 14.3 14.3 14.3	656 655 654 653 652 651		A.41+00		END AREA VO CUT FILL CUT 7.0 7.0 3.2 2.1	FILL 4.2	657 656 655 654 653 652 STA.41+50	657 656 655 654 653 652	END CUT	AREA VO FILL CUT 28.8	LUME FILL 0.0	REV. BY DATE DESCRIPTION ORIGINAL ISSUE DATE: 01-31-2025
655 654 653 652 651 650 649	STA.40+25	 655 654 653 652 651 650 649 649 	2.2 14.1	656 655 654 653 652 651		A.40+75	Image:	3.8 2.1	1.9	656 655 654 653 652 651 STA.41+27.2	A second seco	13.0	6.3		SCALE: AS NUIEU PROFESSIONAL DESIGN & CUNIC DESIGNED: JKW PROFESSIONAL DESIGN & CONSTRUCTION SERVICES DRAWN BY: JKW P.O. BOX 798 CHECKED BY: JKW 740-253-1618 primecivil.jwetz@gmail.com
				655 654 653 652 651 650 649	STA.	40+50.05	Image:	1.9 14.3	7.6	656 655 654 653 652 651 STA.41+25		11.8	6.9	0.5	CITY OF JACKSON, JACKSON COUNTY, OHIO CITY OF JACKSON, JACKSON COUNTY, OHIO
60 40	20 0 20 40	60	· · 2 14	60	40 20	φ	20 40 60	· · 13	14		o 6o		48	3	32 / 45

		END A CUT	REA VOLUME FILL CUT FILL 19.4 3.8			END AREA VOLUME CUT FILL CUT FILL 23.0 3.2			END AREA VOLU CUT FILL CUT Image: Comparison of the second se	ME FILL 2.6 NOIL NOIL
657 656 655 654 653 652	STA.42+25	657 656 655 654 653 21.3	2.8				658	658 657 656 656 655 654 653	19.4 3.3	m REV. BY ORIGINAL ISSUE DATE 01
657 656 655 654 653 653			21.6 2.6	657 656 655 654 653 652 STA.	657 656 655 654 653 652 42+75	23.9 4.6		658 657 656 655 654 653	28.3 0.4	LE: AS NOTED CNED: JKW GNED: JKW WN BY: JKW CHILLICOTHE, OH 45601 CKED BY: JKW CKED BY: JKW CHILLICOTHE, OH 45601 740-253-1618 primecivil.jwetz@gmail.con
652 657 656 655 654 653 652	STA.42+00	652 654 653 653 652	0.0	657 656 655 654 653 652 STA.	42+50		653 STA.43+25 STA.43+25	653 653 658 657 656 655 654 653	25.7 2.3	TICT PROJECT PROJECT CENE CENE PROJECT PROJECT CALE DESIG DESIG DESIG DESIG DESIG DESIG DESIG DESIG DESIG DESIG DESIG DESIG
60	40 20 0 20 4	o 60 ·	· 68 8	60 40 20	o 20 40 60	· · 44 8	60 40 20 0 2	o 40 60	- · · 68	CROSS SECTIONS SHEET NO. 33 / 45

			DAREA VOLUME FILL CUT 20.1 2.8			END AREAVOLUMECUTFILLCUT33.712		END ARE CUT FIL	EA VOLUME LL CUT FILL	
659 658 657 656 655 654 653	STA.44+25	659 658 657 656 655 654 20.7 654	5.0				661 660 659 658 657 656	661 660 659 658 657 40.7 0.	.0	REV. BY DATE DATE: DESCRIPTION
659 658 657 656 655 654	STA.44+00	659 658 657 656 655 654 16.8	4.4	660 659 658 657 656 655	660 660 659 658 657 656 655 5TA.44+75		STA.45+50 661 661 660 659 658 657 656 STA.45+25		0	SCALE: AS NOTED PRIME CIVIL DESIGNED: JKW PROFESSIONAL DESIGN & CONSTRUCTION SERVICES DRAWN BY: JKW P.O. BOX 798 CHECKED RY IKW 710-352-1648
659 658 657 656 655 654	STA.43+75	659 658 657 656 655 654 25.2	2.4	659 658 657 656 655 654	659 658 657 656 655 655 654 5TA.44+50		661 660 659 658 657 656 STA-45+00	661 660 659 658 657 656 43.6 0.	.0	CITY OF JACKSON, JACKSON COUNTY, OHIO
6	o 40 20 0 20 40	6o	57 10		20 0 20 40 60	· · 58 3	60 40 20 0 20 40	6o	115 0	34/45

	END AREA VOLUME CUT FILL CUT FILL 55.4 0.8 0.8 0.00000000000000000000000000000000000	END AREA VOLUME CUT FILL CUT FILL 19.2 1.1 Independent of the second of		END AREA VOLUME CUT FILL CUT FILL CUT FILL 22.7 0.9
			663 662 661 660 659 658 STA.47+50	663 662 661 660 23.7 1.2
662 662 661 662 661 661 660 660 659 659 658 657 656 655 656 655 STA.46+00 1	36.6 0.0 36.6 0.0	662 661 663 660 659 658 657 19.7 1.1 656 656	663 663 664 665 660 659 658 657 STA.47+25	Image: Second period of the second period
661 661 661 661 660 660 659 659 658 657 656 656 655 656 655 656 555 5TA.45+75	35.4 0.0 35.4 0.0 662 661 660 659 658 657 STA.26+50	19.9 0.8 662 661 660 66 659 658 657 23.2 0.5 65	662 661 660 659 658 657 STA.47+00	Image: State of the state o
	· · <td>40 60 39 2</td> <td>60 40 20 0 20 40</td> <td>60 · · 65 3 35 /</td>	40 60 39 2	60 40 20 0 20 40	60 · · 65 3 35 /

					26.9 0.6						7.3 0.0		
										_			
663			663			664			664				
662			662			663			663				
664			66.							31.9 0.0			
001			001			002			002	_			
660			660	28.3 1.3		661			661				
659			659			660			660				
	STA	4.48+25					STA.4	8+86.99					
										_			
					25.4 0.9						13.6 0.0		
663			663			664			664	_			
662			662			663			663				
661			661			662			662				
						002			002				
660			660	26.6 0.7		661			661	29.3 0.0			
659			659			660			660				
658			658										
	STA	4.48+00					STA	48+75					
					24.0 0.6						27.3 0.0		
662			662			663			663			664	
661			661			662			662			663	
660			660			661			661			662	
659			659			660			660			661	
658			658	27.3 0.7		659			659	29.0 0.0			
	STA	4.47+75					STA	48+50					STA.48+99.27
60	40 20	o 20 4	40 60		76 2	60	40 20	o 20	40 60		48 0	60 40 20	o 20 4

												· · · · · ·			
								END A	AREA FILL	VOLU CUT	JME FILL				
														TION	-31-2025
														DESCRIP'	01
															E DATE:
															IAL ISSU
														DATE	ORIGIN
														REV. BY	
															om
													ON SERVICE	10	@gmail.c
													ONSTRUCTI	7 /90 5, OH 4560	civil.jwetz
												MF	DESIGN & C	P.O. BU	prime
												PR	DFESSIONAL	СН	253-1618
													PR(740-2
												S NOTED	JKW	JKW	JKW
												A	Ü	BY:	О ВҮ:
												SCALE:	DESIGNE	DRAWN	CHECKEI
													NOIS	C	2
													EXTEN		
												L L	REET		
												PROJE	ETS SI		
663							66 <u>4</u> 66 <u>3</u>						_ TIBB		
662							662						NERAI		
			۲۸ ⊿۹	+00.27				0.0	0.0				GEI		
			JTA.40	1799.2/									CROS	S	
													SHEET	NO.	
6	o 4	υ 2	U (ע <u>2</u>	<u>v</u> 4	υθ	ou	•	•	•		ノノ	\sim 1	T,	ノ

COMMERCIAL DRIVE DETAIL, TYP

			DESCRIPTION	SUE DATE: 01-31-2025
			DATE	ORIGINAL IS
			REV. BY	
PRIMF CIVII	PROFESSIONAL DESIGN & CONSTRUCTION SERVICES		Р.О. ВОХ 798 СНИТЕОН 45601	740-253-1618 primecivil.jwetz@gmail.com
AS NOTED	JKW		JKW	JKW
SCALE:	DESIGNED:		DRAWN BY:	CHECKED BY:
PROJECT	JACKSON COUNTY COMMISSIONERS		GENERAL HIBBELS STREET EXTENSION	CITY OF JACKSON, JACKSON COUNTY, OHIO
INT A	TER: ND DE	SE D TA	CTI RIV ILS	ON E
3	SНЕ 8	ет /	NO.	5

	CB- <u></u> ODC 24+ ⁻ GRA FL 18	DT NO. 2-3 1.99, 25.0' R TE = 657.86 8" (S) = 654.	T 88				EX	ODO 26+30.54 GRATE F/L 18" (S) X. F/L 12" (W) =	T , 2 . = = (
 		8" (N) = 654.		 				F/L 24" (E)	
				219' - 18"		41%			
							CUT	AND CONNEC CONDUIT TO	.T) (
	657.6				658.6				
	3+	00			4+	00			

503	LS		UNCLASSIFIED EXCAVATION
518	34	CY	POROUS BACKFILL WITH GEOTEXTILE FABRIC
601	7	CY	ROCK CHANNEL PROTECTION, TYPE C WITH FILTER FABRIC
611	56	FT	2' X 5' CONDUIT, TYPE A, 706.05

23+00	24+00
L L S+00.00 S+00.00 S+00.00 S+00.00 S+00.00	-1) ма ма

w ——	R/W		R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W -
				EL-1										
	28+0 _	00		/			29+00						30+00	
				EL-2										CL-
мля ——	₩¥	— м/а —	WA	———— M/出 ——	WA	KW	——— м/н ———	MM	WA	——— M/X ——	₩A	K/X	—— WA ——	W/S

											1
A6+00	JOHN WOLLUM BRIVE	RW CL-2 RW RW	- R/W	R/W 	R/W EL	R/W -	H LINE STA. 47+40			REV. BY DATE DESCRIPTION	ORIGINAL ISSUE DATE: 01-31-2025
	S	L-2 MB MB	- WA	- WA	WA	MA	MATCH		PROFESSIONAL DESIGN & CONSTRUCTION SERVICES	P.O. BOX 798	740-253-1618 Drimecivil.jwetz@gmail.com
								1" = 20'	JKW	ЛКW	JKW
			630 Q 10	630	644	644	644	SCALE:	DESIGNED:	DRAWN BY:	CHECKED BY:
			GROUND MOUNTE SUPPORT, NO. 3 POS	SIGN, FLAT SHEET	CENTER LINE	EDGE LINE, 4"	STOP LINE		ENSION		OHIO
REF NO.	SHEET NO.	STA.	FT	SF	MILE	MILE	FT	-	FXTI		JNTY,
CL-1 CL-2	41, 42, 43, 44 44	10+21 TO 48+78 46+37			0.73 0.01					-]]	N COL
EL-1	41, 42, 43, 44	10+11 TO 46+00				0.68			STR	- -)	CKSO
EL-2 EL-3	41, 42, 43, 44 44	10+11 TO 48+88 46+73 TO 48+88				0.75		PRO	Š Ļ)	N, JAI
									3BF)) 1	KSON
SL-1 SL-2	41	10+20 46+19 TO 46+37					22 18	-		•	JAC
SL-3	44	48+79					22		3AI	ŗ	Y ΟF
SN-1	41	10+20	12	6.25							CIT
SN-2 SN-2	41	10+47 25±85	12	5.00				$\left \right $	U E I))	
	43	36+90	12	6.25							
SN-5	43	40+50	12	6.25				$ $			
SN-7	45	41+2/	12	6.25							
SN-8	44	48+51	12	5.00]			
518-9	44	40+/9	12	0.25					ынее 1 Л	т NO. / Л	5
								"	T T /	1 1	ノ

OHIO DEPARTMENT OF							
TRANSPORTATION							
STANDARD CONSTRUCTION DRAWINGS							
1.20	10/18/2013	TC-71.10	07/15/20				

